Allegato: “Il Progetto di ricerca”

Progetto Messiah: MEtodologie, Strumenti e Servizi Innovativi per l’ArcHeologia Subacquea
CULTURA E INNOVAZIONE S.C.a R.L.

INDICE

Prima parte - Proposta di Capitolato Tecnico ..1
1 – Dati salienti sul progetto ..1
1.1 – Titolo ..1
1.2 - Descrizione dell’obiettivo finale ..2
 1.2.1 - Caratteristiche e prestazioni da realizzare ...6
 1.2.2 - Specifiche quantitative da conseguire ...7
 1.2.3 - Principali problematiche di R&S ..9
 1.2.3.1 - Strumenti e metodologie per l’individuazione di reperti subacquei ...10
 1.2.3.2 - Tecniche di simulazione per la pianificazione degli interventi di recupero ...11
 1.2.3.3 - Problematiche legate a tecniche di restauro di reperti riportati in superficie ..11
 1.2.3.4 - Problematiche inerenti la costruzione di un sistema informativo distribuito ...13
 1.2.3.5 - Rappresentazione della conoscenza e suo utilizzo ..15
 1.2.3.6 - Modelli culturali e scientifici per la validazione dei processi ...16
 1.3 - Durata ..17
 1.4 - Luoghi di svolgimento del progetto ...17
 1.5 - Responsabile del progetto ..17

2 – Obiettivi attività e tempistica ...18
 2.1 - Struttura del prodotto/processo/servizio ...18
 2.2 - Obiettivi realizzativi e Attività ...21
 2.2.1) OR1: Definizione di metodi, sistemi e strumenti per l’individuazione e il rilievo in situ dei beni archeologici sommersi ..22
 2.2.1.a) Descrizione dell’OR1 ...22
 2.2.1.b) Stato dell’arte dell’OR1 ..23
 2.2.1.c) Attività dell’OR1 ...24
 2.2.1.d) Risultati per attività e partner coinvolti ..32
 2.2.1.e) Input dell’OR1 ...32
 2.2.1.f) Output dell’OR1 ...32
 2.2.1.g) Collegamenti tra l’OR1 e gli altri OR del progetto ...33
 2.2.1.h) Riferimenti bibliografici dell’OR1 ..33
 2.2.2) OR2: Studio e definizione di modelli innovativi per la progettazione e la pianificazione di interventi nel settore dell’archeologia sommersa ..35
 2.2.2.a) Descrizione dell’OR2 ...35
 2.2.2.b) Stato dell’arte dell’OR2 ..36
 2.2.2.c) Attività dell’OR2 ...38
 2.2.2.d) Risultati per attività e partner coinvolti ..45
 2.2.2.e) Input dell’OR2 ...46
 2.2.2.f) Output dell’OR2 ...46
 2.2.2.g) Collegamenti tra l’OR2 e gli altri OR del progetto ...46
 2.2.2.h) Riferimenti bibliografici dell’OR2 ..46
2.2.3) OR3: Sistemi per il recupero, il rilievo e il trattamento conservativo in superficie ...48
 2.2.3.a) Descrizione dell’OR3 ...48
 2.2.3.b) Stato dell’arte dell’OR3 ..50
 2.2.3.c) Attività dell’OR3 ...52
 2.2.3.d) Risultati per attività e partner coinvolti61
 2.2.3.e) Input dell’OR3 ..62
 2.2.3.f) Output dell’OR3 ...62
 2.2.3.g) Collegamenti tra l’OR3 e gli altri OR del progetto62
 2.2.3.h) Riferimenti bibliografici dell’OR3 ...63

2.2.4) OR4: Sistema di Gestione, Monitoraggio e Controllo RealTime e di Presentazione e Disseminazione dei risultati Scientifici66
 2.2.4.a) Descrizione dell’OR4 ...66
 2.2.4.b) Stato dell’arte dell’OR4 ..72
 2.2.4.c) Attività dell’OR4 ...80
 2.2.4.d) Risultati per attività e partner coinvolti82
 2.2.4.e) Input dell’OR4 ..82
 2.2.4.f) Output dell’OR4 ...82
 2.2.4.g) Collegamenti tra l’OR4 e gli altri OR del progetto83
 2.2.4.h) Riferimenti bibliografici dell’OR4 ...83

2.2.5) OR5: Un Sistema Knowledge-based per la Catalogazione e l’Accesso ai Beni dell’archeologia subacquea ..84
 2.2.5.a) Descrizione dell’OR5 ...84
 2.2.5.b) Stato dell’arte dell’OR5 ..87
 2.2.5.c) Attività dell’OR5 ...98
 2.2.5.d) Risultati per attività e partner coinvolti103
 2.2.5.e) Input dell’OR5 ..104
 2.2.5.f) Output dell’OR5 ...104
 2.2.5.g) Collegamenti tra l’OR5 e gli altri OR del progetto104
 2.2.5.h) Riferimenti bibliografici dell’OR5 ...105

2.2.6) OR6: Integrazione dei risultati ottenuti e realizzazione del dimostrativo 111
 2.2.6.a) Descrizione dell’OR6 ...111
 2.2.6.b) Stato dell’arte dell’OR6 ..112
 2.2.6.c) Attività dell’OR6 ...115
 2.2.6.d) Risultati per attività e partner coinvolti120
 2.2.6.e) Input dell’OR6 ..120
 2.2.6.f) Output dell’OR6 ...120
 2.2.6.g) Collegamenti tra l’OR6 e gli altri OR del progetto120
 2.2.6.h) Riferimenti bibliografici dell’OR6 ...120

2.2.7) OR7: Studio e definizione di modelli innovativi knowledge based per il trasferimento tecnologico della ricerca di base per i beni culturali121
 2.2.7.a) Descrizione dell’OR7 ...121
 2.2.7.b) Stato dell’arte dell’OR7 ..132
 2.2.7.c) Attività dell’OR7 ...134
12.1 - Personale e consulenze (per ogni socio coinvolto nel progetto) 189
12.2 - Altri costi .. 205
12.2.1 - Attrezzature .. 205
12.2.2 - Consulenze ... 207
12.2.3 - Materiali .. 208
13 – Requisiti per la concessione di ulteriori agevolazioni 209
13.1 - Svolgimento con partner della U.E. (non applicabile al presente progetto) . 209
13.2 - Svolgimento di progetti con enti pubblici di ricerca/università 209

INDICE DELLE FIGURE

Figura 1 - Diagramma di contesto progetto MESSIAH ... 3
Figura 2 – Architettura generale del progetto MESSIAH ... 4
Figura 3 – Interazione degli OR .. 19
Figura 4 - Schema logico OR2 .. 35
Figura 5 - Arricchimento dell’ontologia con risorse multimediali 40
Figura 6 – Sala visione .. 66
Figura 7 - Foto di reperti subacquei .. 67
Figura 8 - Sistema di visualizzazione interattivo ... 68
Figura 9 - Diagramma di Contesto OR4 .. 70
Figura 10 - Primo Livello di Decomposizione OR4 ... 71
Figura 11 - Submarine Officer of the Deck Training Using Virtual Environments: An Assessment of Training System Capabilities - Dennis A. Vincenzi, Robert T. Hays and Alton G. Seamon .. 72
Figura 12 - A Trainee’s View During the Man Overboard Event 72
Figura 13 - Captain Mike Tracy, Commander, Submarine Squadron Eight, using virtual training ... 73
Figura 14 - a comparison of video shots of real-world objects and the high-fidelity virtual representations of the same objects as depicted in VESUB ... 73
Figura 15 – The Cosquer Cave - Ministry of Culture (Francia) - Architecture and Heritage directorate, sub-directorate for archeology - Department for underwater archeological research .. 74
Figura 16 - Low Chamber in the west zone... 75
Figura 17 - The Black Horse ... 75
Figura 18 - Examples (Roman Mosaic and Fragment of krater) 76
Figura 19 - Architettura del Sistema Knowledge Based .. 85
Figura 20 - Obiettivo di Integrazione .. 115
Figura 21 - Fase Indagine e Pianificazione ... 116
Figura 22 - Supporto alla Decisione e Piano di Intervento 117
Figura 23 - Missione Real-Time ... 118
Figura 24 – Il sistema del cluster .. 126
Figura 25 – Schema metodologico sistema di knowledge based 127
INDICE DELLE TABELLE

Tabella 1 - Obiettivi Realizzativi del progetto di ricerca...18
Tabella 2 – Elenco attività OR1...22
Tabella 3 – Risultati, responsabili e partner OR1 ..32
Tabella 4 – Elenco attività OR2..36
Tabella 5 – Risultati e responsabili OR2..45
Tabella 6 – Elenco attività OR3..50
Tabella 7 – Risultati, responsabili e partner OR3 ..61
Tabella 8 – Elenco Attività OR4 ...70
Tabella 9 – Risultati, responsabili e partner OR4 ..82
Tabella 10 – Relazione tra Agenti e Domini conoscitivi ...84
Tabella 11 – Elenco attività OR5 ..86
Tabella 12 – Risultati, responsabili e partner OR5 ...103
Tabella 13 - Attività OR6..111
Tabella 14 – Risultati, responsabili e partner OR6 ...120
Tabella 15 – Elenco attività OR7..131
Tabella 16 – Risultati, responsabili e partner OR7 ...135
Tabella 17 – Diagramma di Gantt ..141
Tabella 18 – Risultati disponibili a fine progetto..161
Tabella 19 - Criteri di validazione...167
Tabella 20 – Il valore degli investimenti ripartito tra i Soci..180
Tabella 21 – Suddivisione dei costi per anno solare ...180
Tabella 22 – Stima delle ricadute occupazionali indotte dal progetto MESSIAH187
Tabella 23 – Costi Infobyte per Sala visione ..205
Tabella 24 – Costi Infobyte per sala per il monitor & control real time205
Tabella 25 – Costi CM Sistemi Sud per sala per il monitor & control real time206
Tabella 26 - Costi Sirfin per sala per il monitor & control real time ...206
Tabella 27 – Dettaglio dei costi di materiale Nautilus ...208
Prima parte - Proposta di Capitolato Tecnico

1 – Dati salienti sul progetto

1.1 – Titolo
MESSIAH - MEtodologie, Strumenti e Servizi Innovativi per l’ArcHeologia subacquea
1.2 - Descrizione dell'obiettivo finale

L’azione pilota per la creazione del distretto tecnologico dei beni culturali configura la realizzazione, su scala regionale, di una rete di eccellenza interdisciplinare incentrata su tre aree tecnologiche rilevanti per il settore dei beni culturali: modelli e processi innovativi di knowledge based applicati ai beni culturali; tecnologie per la conservazione, il restauro e la tutela dei beni culturali; tecnologie per la ricerca applicata alle tecniche di individuazione e scavo dei siti archeologici.

La proposta progettuale per l’azione 4 riguarda lo sviluppo di strumenti innovativi a supporto delle attività di archeologia subacquea, in grado, da una parte, di rispondere efficacemente ai fabbisogni di innovazione di questa disciplina e, d’altra parte, di promuovere il Distretto nel suo potenziale ruolo di collegamento tra la gestione del patrimonio subacqueo e le politiche di promozione del territorio della regione.

Sintetizzando le caratteristiche delle tecnologie oggetto della ricerca che si propone potremmo dire che, una volta individuato un percorso metodologico nell’affrontare il processo che va dal ritrovamento di un reperto in ambiente subacqueo (imbarcazioni, merci trasportate, anfore, pezzi lignei e/o metallici, preziosi, etc.), ci si pone l’obiettivo di supportare alcune fasi della metodologia con specifici strumenti e tecnologie innovative che hanno in se le potenzialità per:

- tracciare le modalità operative di intervento e pervenire ai conseguenti risultati impattando sui tempi e sui costi;
- avere implicazione dirette in diversi settori in cui le tecnologie proposte potrebbero esprimere tutte le potenzialità (diversificazione dei mercati potenziali);
- realizzare concretamente il concetto di filiera grazie alle metodiche di integrazione tecnologico/funzionale delle soluzioni proposte;
- permettere un approccio quantitativo scientifico in ambiti ancora affrontati in modo empirico;
- ottimizzare la definizione e la metodologia dei programmi di intervento sui siti sommersi, ai fini della tutela e della ricerca: valutazione d’impatto e del rischio archeologico.

Da quanto detto è quindi necessario delineare un percorso scientificamente accettato sulle cui fasi costituenti si formuleranno le ipotesi di ricerca industriale che sfoceranno in dimostratori utili alla verifica in situ delle teorie formulate per la realizzazione degli strumenti stessi.

Dal punto di vista macroscopico è opportuno evidenziare in uno schema logico quello che è il contesto operativo dell’intero progetto MESSIAH; in figura 1 è riportata tale schematizzazione.
Sotto il profilo della conservazione del patrimonio culturale, in generale, questo processo è legato alla tipologia e rilevanza dei fenomeni che comportano rischio di perdita e degrado. Per quanto riguarda il patrimonio sommerso, i fenomeni di rilevanza per la conservazione sono, in misura pressoché totale, ascrivibili all’interazione uomo-bene piuttosto che all’interazione ambiente-bene.

Si osservi infatti quanto segue:

1. la sopravvivenza per secoli nella sua sede di giacenza di un bene sommerso ne caratterizza la capacità di resistenza all’ambiente marino, anche in presenza di sostanze inquinanti (che tendono a diffondersi negli strati superficiali) e di deriva termica (la cui entità non preoccupa sotto il profilo della conservazione dei reperti);
2. la sottrazione di reperti da parte di subacquei amatoriali e il danneggiamento e prelievo da parte delle attività di pesca a strascico costituiscono esempi di danneggiamento globale del patrimonio di importanza molto maggiore rispetto a qualsiasi degrado delle acque profonde finora osservato.

Per prevenire i fenomeni di degrado per interazione uomo-bene è necessario anticipare il più possibile la conoscenza in merito alla dislocazione dei beni, il cui censimento costituisce, di per sé, ostacolo alla circolazione non controllata e illecita.

Da questo deriva l’ enfasi che si intende dare nel progetto allo sviluppo di attività di ricognizione del patrimonio sommerso in modo da abilitare la messa in opera, da parte delle autorità competenti, di iniziative di sorveglianza, controllo e sensibilizzazione.

Il secondo elemento qualificante riguarda il profilo del controllo e della conoscenza, dove vi è la necessità di collegare il patrimonio subacqueo alla matrice storica e culturale della Calabria, adottando tecniche e metodi innovativi per caratterizzare la rappresentazione
dei beni censiti in termini dei contenuti storici e culturali da essi espressi. Da questo segue la centralità della relazione terra-mare.

Tale relazione deve essere gestita su due livelli:

- sul livello dei fenomeni storici e culturali, in quanto questi abbracciano, in generale, tutti i contesti della vita umana e un percorso interpretativo dei reperti potrà interessare contemporaneamente reperti localizzati sia su terra sia nel mare; nello studio come nella espressione dei beni sarà fondamentale correlare opportunamente i reperti sommersi con il patrimonio emerso; questo implica la capacità tecnologica di accesso alle informazioni nei sistemi informativi di catalogo esistenti;

- al livello del singolo sito, in quanto esistono molte tipologie di insediamento che sono oggetto di studio dell’archeologia subacquea per le quali non esiste soluzione di continuità tra parte emersa e sommersa (esempi: porti, approdi, cave, peschiere, ville marittime).

In questo contesto, la presente proposta riguarda lo studio di modelli, procedure, strumenti e tecnologie innovative per l’identificazione, il recupero, la rappresentazione, la conservazione, il restauro e la valorizzazione e fruizione dei beni culturali sommersi.

MESSIAH è suddiviso in 7 Obiettivi Realizzativi così come riportato in figura 2, che sintetizza l’architettura generale del progetto.

![Figura 2 – Architettura generale del progetto MESSIAH](image)
Si riconoscono:
- le cinque aree del modello di riferimento dato; l’area relativa alla conoscenza del patrimonio costituisce elemento di coesione generale in una logica di sviluppo integrato del Distretto;
- le tecnologie e gli strumenti che operano come fattori produttivi nell’ambito delle singole aree; le tecnologie di gestione della conoscenza, per quanto appena detto, interopero con tutte le altre;
- gli obiettivi realizzativi i quali devono introdurre, in modo armonico, innovazione nelle cinque aree del modello a copertura dei fabbisogni precedentemente espressi; per questo motivo sono fatti corrispondere, nella figura, alle tecnologie; si noti che un ulteriore obiettivo realizzativo – OR6 – è dedicato alla sperimentazione integrata dei sistemi sviluppati.

Le principali componenti conoscitive che caratterizzano il dominio applicativo sono:
- il repertorio dei beni subacquei, ognuno caratterizzato in base alla sua forma, sostanza, ai requisiti relativi alla sua tutela e alla sequenza di azioni operate per la sua conservazione;
- il territorio e la sua rappresentazione;
- l’ambiente subacqueo, la cui rappresentazione deve tener conto delle caratteristiche dei fondali, e di ogni altro elemento risultì necessario alla caratterizzazione ambientale dei siti;
- lo spazio storico, la cui rappresentazione implica l’utilizzo di un modello ontologico in grado, tra le altre cose, di correlare elementi spaziali con la dimensione temporale.

Tali componenti sono messe in relazione, in modo ricco e complesso nel sistema di knowledge management (OR5) che insieme agli altri moduli di supporto alle fasi di individuazione (OR1), alle fasi di pianificazione delle missioni di recupero (OR2), alle fasi di recupero ed inquadramento archeometrico (OR3) ed alla fase di accesso ai dati con sistemi e tecniche di realtà virtuale (OR4) alle fasi creazione di modelli di certificazione delle procedure applicative e modalità di validazione degli esiti (OR7) hanno il compito di raccordare in un ambito unitario tutte le informazioni, le tecnologie, gli attori e le competenze dell’archeologia subacquea.

Un importanza strategica riveste il sistema di realtà virtuale che interfaccia da un lato il sistema informativo, la strumentazione di misura e i sensori, e dall’altro interfaccia direttamente l’utenza. La ricerca nel campo dei sistemi di realtà virtuale riveste pertanto sempre una doppia valenza: tecnica, relativamente all’interfacciamento verso i sistemi e le sorgenti di dati che forniscono le informazioni da visualizzare, e di rapporto verso l’utilizzatore, relativamente ad aspetti quali la compatibilità fisiologica, le modalità di interazione, la facilità d’uso e di accessibilità, ecc…
Attraverso l’uso degli elementi descritti dovrà essere possibile generare modelli e percorsi di valorizzazione del territorio che confrontino e interpretino il patrimonio censito con riferimento al suo contesto storico-culturale.
1.2.1 - Caratteristiche e prestazioni da realizzare

Lo studio di modelli, procedure, strumenti e tecnologie innovative previsti nell’ambito di MESSIAH ha principalmente lo scopo di fornire:

- al pubblico (studiosi, studenti, visitatori)
 o tracciati storico-culturali per la interpretazione del patrimonio sommerso, nonché servizi di front end basati sulla rappresentazione 3D e/o basati su sistemi di realtà virtuale;
- ai soggetti gestori (a tutti i livelli)
 o una serie di strumenti a supporto delle varie fasi del ciclo di vita di un reperto subacqueo, dalla individuazione, al rilievo, dal restauro, alla messa in sicurezza, nonché una serie di strumenti di analisi del patrimonio informativo che nelle varie fasi viene prodotto e patrimonializzato con lo scopo di erogare servizi di supporto alle decisioni.

L’attività svolta permetterà la messa a punto di un sistema in grado di supportare l’intero ciclo di vita di un reperto subacqueo, dalla sua individuazione alla sua fruizione da parte delle differenti classi di utenti (dalla comunità scientifica al pubblico), passando attraverso alcune fasi intermedie dedicate al rilievo subacqueo, il recupero, il restauro, la messa in sicurezza, individuando per ognuna di esse le tecnologie che meglio rispondono allo scopo, e prevedendo in tal senso la realizzazione di strumenti prototipali altamente innovativi quali lo scanner 3D subacqueo, la camera TUCHEB per il restauro in sicurezza con tecniche non invasive, il micro-scanner laser 3D per la rilevazione topografica delle cavità del reperto.

Il sistema prevede un insieme di componenti software che sia orizzontalmente che verticalmente supporteranno le varie fasi descritte, ed in associazione ad una base dati espressamente concepita, permetterà di gestire tutte le informazioni raccolte durante le attività di campo e/o da fonti storiche, fornendo al contempo supporto alle decisioni per la scelta della tipologia di indagine o approccio necessari al rinvenimento del sito, per la collocazione spazio-temporale del reperto individuato, per la produzione di materiale multimediale legata al reperto, per la definizione di percorsi storico-culturali che legano l’oggetto rinvenuto con altri reperti presenti sul territorio e ad esso fortemente legati (o realizzati dallo stesso autore, o accomunati da un unico evento storico di rilievo, o per essi legati allo stesso periodo storico, etc…).

La realizzazione del software darà da un lato la possibilità ai soggetti proponenti di essere competitivi in un settore in grande espansione, e dall’altro alla pubblica amministrazione la possibilità di procedere alla ricerca di beni archeologici sommersi a costi più contenuti rispetto a quelli attualmente praticati, potendo sfruttare anche i potenti mezzi messi a disposizione per la comunicazione e lo scambio di dati tra la cabina di regia ed i rilevamenti sul campo.

Il sistema sarà unico nel suo genere, permettendo di avere delle economie rilevanti sia nel campo delle ricerca dei beni archeologici sommersi, sia nella valorizzazione e fruizione del patrimonio archeologico subacqueo, consentendo la costruzione di itinerari di conoscenza (reali o virtuali), l’analisi costi benefici e il supporto alle decisioni.
Per quanto riguarda l’integrazione logistica, il sistema prevede l’adozione di un modello di fruizione delle viste storiche dedicato a fornire supporto ai visitatori di un’area di interesse storico culturale, agli studiosi ed operatori di sistema, ad utenti esterni attraverso la rete Internet. In riferimento al modello di fruizione, si intende far sì che l’interazione utente-sistema possa basarsi su formati multimediali differenti. L’approccio legato agli standard, garantirà il massimo riutilizzo del sistema a beneficio di ulteriori estensioni, integrazioni o cooperazioni con altri soggetti esterni.

Nel corso della sperimentazione (OR6), verrà analizzato l’impatto dell’innovatività delle tecnologie utilizzate sia sulle singole fasi che sulla metodologia nel suo insieme. Tale impatto sarà valutato da diversi punti di vista: tempi, costi, operatività e ricchezza ed esaustività delle informazioni ottenibili con i nuovi strumenti. I principali parametri che concorrono a determinare le prestazioni generali delle procedure sviluppate nell’OR6 sono:

- aumento della conoscenza con nuovi elementi e contenuti disponibili alla comunità scientifica;
- riduzione dei tempi di indagine in base alle nuove tecniche real time ed al supporto alle decisioni inserito;
- fluidità Real-Time di tutte le funzioni di visualizzazione e di monitor&control;
- efficacia della correlazione Real-Time dei segnali video live con i modelli sintetici;
- efficacia del sistema di pianificazione e degli algoritmi di simulazione e previsione;
- efficienza del collegamento real time terra mare durante le fasi di acquisizione e verso gli altri centri di ricerca remoti collegati a MESSIAH;
- accessibilità dei dati storicizzati.

Inoltre per la modalità di accesso ai dati live ed i relativi servizi alla comunità scientifica andranno valutati specifici indicatori definiti sulla base di:

- usabilità del servizio;
- accessibilità del servizio in generale;
- gradimento delle singole applicazioni;
- interesse verso i contenuti informativi proposti;
- livello di “valore aggiunto” delle informazioni percepito.

1.2.2 - Specifiche quantitative da conseguire

Le specifiche quantitative che si intende conseguire con la realizzazione e lo sfruttamento del sistema nel suo complesso e grazie ad alcuni moduli architetturali specifici riguardano la possibilità di:

- massimizzare il patrimonio archeologico subacqueo calabrese individuando e recuperando nuovi reperti, previa progettazione e pianificazione di campagne di rilevamento e di osservazione dei siti ritenuti di interesse;
- minimizzare i tempi di individuazione di aree di interesse archeologico in base alla correlazione con i sistemi e le banche dati esistenti delle rotte storiche e delle
morfologie marine (le mappe dei fondali già in possesso costituiscono una importante banca dati dei rilievi effettuati);
- minimizzare i costi di recupero, grazie al software per il supporto all’interpretazione delle anomalie rilevate dal Side Scan Sonar e con il supporto di dati di quick-look (evitando costi inutili legati ad operazioni subacquee su oggetti di nessuna rilevanza archeologica);
- ridurre i costi nella formazione degli addetti al recupero grazie alla simulazione di scenari operativi per il training degli operatori coinvolti in tali interventi per la validazione delle procedure di sicurezza;
- migliorare il livello di servizio agli utenti tramite la creazione di itinerari sommersi per parchi sottomarini in conformità alle vigenti leggi ed alle norme di messa in sicurezza;
- massimizzare la conoscenza acquisita sul campo o sul patrimonio storico culturale, correlando dati derivanti da apparati di monitoraggio (immagini live, dati di scansione, immagini fotografiche) con oggetti ed ambienti 3d presenti nella banca dati storica-digitale al fine di studiare le ipotesi di reperto ancora sommerso la disposizione probabile dei reperti nel sito la loro datazione e l’eventuale necessità di intervenire in profondità per recupero di reperti di interesse scientifico o la decisione di mettere in sicurezza l’intero sito per evitare atti di asportazione o ruberie;
- minimizzare il rischio di degrado di un reperto sulla base della previsione del degrado in base agli agenti chimici e naturali in relazione alla posizione del sito ed alla sua vicinanza a luoghi a rischio da un punto di vista ambientale;
- programmare il minore numero di campionamenti distruttivi su un materiale pregiato (statua marmorea o ceramica invetriata), attraverso tecniche non distruttive che consentono di ottenere delle visualizzazioni degli interni dei reperti subacquei e di avere una mappatura superficiale composizionale del reperto, e rendendo più immediata la predisposizione della fase di pulitura e soprattutto di protezione/consolidamento, attraverso la scelta di prodotti che si possano meglio adattare alle reali condizioni dei materiali investigati;
- massimizzare l’esplicitazione di conoscenza tacita rendendo disponibili in forma integrata (tramite una rappresentazione ontologica) un numero consistente di sistemi informativi di catalogo, accessibili tramite opportune interfacce di fruizione ed interrogazione intelligenti, capaci di effettuare del reasoning sugli elementi della conoscenza;
- validare scientificamente il dato culturale prodotto.

È importante sottolineare come, al fine di conseguire alcuni tra gli obiettivi sopraindicati, alcune Imprese del Consorzio siano in condizione di sfruttare rilevanti esperienze in ambiti non legati propriamente all’archeologia subacqua, ma che possono essere finalizzate allo sviluppo e all’integrazione delle tecniche che contribuiranno al raggiungimento di tali risultati. Il progetto mira pertanto a supportare le azioni di ricerca e sviluppo, con particolare attenzione per l’archeologia subacqua, offrendo alle stesse imprese l’opportunità di coordinarsi, attraverso una azione di ricerca sinergica, per soddisfare esigenze comuni o comunque complementari.
Un ulteriore aspetto da tenere in considerazione è che, grazie a questo progetto di ricerca, le aziende acquisirebbero competenze avanzate ed elementi di sicura innovazione nell’ambito delle attività di ricerca e promozione di reperti subacquei.

Infine, la verifica dei risultati conseguiti nella fase di sperimentazione sarà effettuata attraverso l’integrazione delle singole componenti SW realizzate applicate ed un caso di test live:
- sottosistemi integrati e disponibili alla fase di sperimentazione;
- dimostrativo del sistema MESSIAH validato;
- banca dati di supporto al centro di disseminazione e presentazione dei dati on-line e disponibile alle fasi dimostrative per l’area di Crotone;
- risultati scientifici del dimostrativo effettuato disponibili a tutti gli utenti del sistema MESSIAH in modalità multicanale;
- Riduzione dei costi rispetto alle modalità di indagine pre-MESSIAH.

1.2.3 - Principali problematiche di R&S
Le motivazioni principali per cui è necessario oggi investire nella ricerca di nuove tecnologie a supporto dell’archeologia subacquea sono molteplici. Va detto che da sempre, in Italia si è manifestato scarso interesse per questo settore sia dalle Università che dai vari Ministeri preposti alla conservazione dei beni culturali, con il risultato che non si è riconosciuta una disciplina autonoma nel settore del sommerso a differenza di altri paesi. Il risultato macroscopico è stato tangibile in termini di investimenti da parte di quei soggetti che, pur avendo competenze tecniche d’avanguardia, hanno preferito deviare l’attenzione verso altre aree e/o mercati non percependo la potenzialità di investire e di divenire trainanti e competitivi su questo settore principalmente nell’area Mediterraneo e trasformando la sinergia e la competenza in una filiera di eccellenza capace di rispondere alle richieste di ricerca e di servizio provenienti anche da altri paesi.
La realizzazione di un intervento mirato a supportare l’intero ciclo di vita di un reperto archeologico subacqueo, va incontro alla necessità di creare delle sinergie forti tra ambiti e problematiche scientifiche e tecnologiche abbastanza diversificate. Le problematiche di R&S da affrontare vanno quindi inquadrate in un contesto in cui la necessità di alimentare e supportare tali sinergie con Strumenti, Metodologie e Tecniche innovative diventa un elemento essenziale ai fini della riuscita del progetto nel suo complesso.
Le problematiche di R&S affrontate nel Progetto di ricerca possono essere ricomprese su alcuni ambiti di azione principali:
- strumenti e metodologie per l’individuazione di reperti subacquei;
- tecniche di simulazione per la pianificazione degli interventi di recupero;
- problematiche legate a tecniche di restauro di reperti riportati in superficie;
- problematiche inerenti la costruzione di un sistema informativo distribuito;
- rappresentazione della conoscenza e suo utilizzo;
- scientificità del dato.
1.2.3.1 - Strumenti e metodologie per l’individuazione di reperti subacquei

Attualmente non esiste sul panorama nazionale ed internazionale un sistema specifico in grado di operare per la ricerca dei beni archeologici sommersi. Le indagini vengono effettuate mediante l’utilizzo di sistemi side scan sonar integrati con dati multi-beam, sub-bottom profiler e successivamente all’interpretazione dei dati con la verifica mediante veicoli filoguidati (ROV) o ispezioni subacquee dirette. Naturalmente non sempre ciò che viene interpretato dai geofisici è riconducibile a reperti archeologici, sennonché le successive ispezioni visive si dimostrano un dispendoro di risorse economiche e di tempo. Con la realizzazione del programma di ricerca sarà possibile individuare le migliori tecnologie, definire le tecniche e le metodologie più idonee, sviluppare un prototipo di scanner 3D per rilevare la geometria tridimensionale dei reperti sommersi.

Viene data la possibilità di discretizzare tutta una serie di target (reperti archeologici, scogli, rifiuti vari, fondo duro e mobile etc.) e di creare una banca dati apposita. La banca dati interfacciata con il software da realizzare permetterà di creare un sistema di supporto alle decisioni che accompagnerà l’attività dei geofisici nell’individuazione dei beni archeologici sommersi.

Le problematiche di R&S associate alle fasi di sviluppo delle componenti software e hardware sono quelle che derivano da eventuali anomalie del software (debug). Per questo motivo è prevista la sua revisione e il miglioramento.

Per quanto concerne la realizzazione di nuovi strumenti è da segnalare che attualmente non esistono sul mercato scanner 3D subacquei.

Lo scanner 3D subacqueo rappresenta un’innovazione tecnologica per l’archeologia subacquea che si presta a diverse applicazioni (analisi, creazione di copie, fruizione digitale) e che pertanto potrebbe apportare un notevole contributo alla crescita del mercato delle strumentazioni ad alta tecnologia per questo settore.

Esistono diverse problematiche di R&S associate alle diverse fasi di sviluppo del prototipo. La prima fase riguarda lo sviluppo di tecniche per il rilievo 3D sottomarino che sarà affrontata attraverso un’attività di ricerca teorico-sperimentale indirizzata a determinare in che modo la turbidità e le proprietà ottiche dell’acqua influenzano le tecnologie di scansione 3D attualmente descritte nella letteratura scientifica. Tale attività servirà per determinare la tecnologia più adatta allo scopo.

Nella seconda fase i risultati precedentemente ottenuti saranno impiegati per la realizzazione di un prototipo dimostrativo. Le problematiche di R&S connesse a questa attività sono principalmente di tipo progettuale. Si applicherà il metodo della progettazione virtuale che, impiegando diversi codici di simulazione numerica, permette di ridurre il costo e la durata della fase di prototipazione fisica.

Infine si procederà alla realizzazione del prototipo fisico dello scanner 3D subacqueo necessario per valutare la rispondenza effettiva del prodotto con le specifiche di progetto. La valutazione dello scanner sarà effettuata mediante opportune prove in vasca ove si simuleranno diversi valori di turbidità dell’acqua facendo variare in maniera opportuna la quantità di particelle in sospensione. Si effettueranno diverse scansioni su oggetti di geometria nota utilizzando diversi valori della turbidità. Confrontando i risultati delle
scansioni con la forma geometrica esatta degli oggetti si potrà misurare la precisione ottenuta e la rispondenza con le specifiche di progetto.

1.2.3.2 - Tecniche di simulazione per la pianificazione degli interventi di recupero
Una parte del progetto individua come obiettivo di ricerca industriale l’analisi e la definizione di modelli di lettura critica di ambienti storici, attraverso la combinazione strutturata di fonti diverse per favorire interpretazioni multilivello, per il supporto alle decisioni e per la pianificazione degli interventi sul sito.
Vista la complessità dei dati e delle informazioni che agiscono nel contesto del sommerso e la complessità delle procedure di intervento che oggi sono praticate, riteniamo che uno dei punti di sintesi da sviluppare sia quello di un sistema SW di simulazione che sia capace di attingere alle banche dati esistenti e di supportare il processo di pianificazione e di decisione per chi è predisposto ad intervenire.
E’ difatto l’assenza di strumenti informatici e di supporto a livello nazionale ed internazionale mirati al settore dell’archeologia subacquea che motiva la scelta di creare un sistema SW innovativo di cooperating work basato su tecniche di simulazione e di visualizzazione dei dati con l’uso della realtà virtuale, strumento che riteniamo indispensabile a chiunque debba agire sul territorio nel rispetto delle normative vigenti, delle condizioni operative del sito e dell’importanza del rilievo effettuato e soprattutto al fine di accelerare l’iter decisionale in un contesto dove è molto difficile garantire la salvaguardia del patrimonio culturale sommerso dal saccheggio e dal danneggiamento di clandestini e dall’azione distruttiva degli agenti naturali.

1.2.3.3 - Problematiche legate a tecniche di restauro di reperti riportati in superficie
Questo filone di ricerca riguarda le problematiche da affrontare all’interno del progetto per la documentazione, il trattamento e la conservazione di reperti provenienti dai fondali marini, una volta riportati in superficie.

Problematiche relative alla documentazione dei reperti: la parte più innovativa in questo settore, e che quindi presenterà le maggiori problematiche, è la messa a punto del microscanner 3D. Il micro scanner laser 3D si basa su di un sistema di rilevazione della distanza conoscopica e su di una speciale sonda di misura alla cui estremità è presente un micro-specchio free-standing. I microspecchi ottici sono diventati, in questi ultimi anni, uno dei maggiori argomenti di ricerca grazie alle loro molteplici possibilità di utilizzo in diverse applicazioni. Sono in grado di modulare la fase o l’ampiezza della luce incidente, sono utilizzati come componenti integrati nei sistemi di proiezione, negli scanner ottici, nei sistemi ottici adattativi e come interruttori e commutatori nei sistemi di comunicazione ottici. I microspecchi a torsione sono in grado di ruotare attorno ad un asse ma non possono traslare. Questo permette loro di avere un migliore comportamento dinamico e li rende particolarmente adatti alle applicazioni che richiedono alte velocità e forte integrazione come i sistemi di proiezione o i sistemi di commutazione ottici. La maggior parte dei microspecchi riportati in letteratura sfruttano l’attuazione elettrostatica. Questa
richiede elevate tensioni di lavoro (>100V) per ottenere gli angoli richiesti e non permette una struttura meccanica robusta in quanto la barra di torsione deve essere molto fine per ottenere una bassa costante elastica. Sono comunque molte le applicazioni dei microspecchi in cui vengono richiesti ampi angoli di deflessione e robuste strutture meccaniche.

L’attuazione magnetica è un metodo efficace per ottenere ampi angoli di deflessione e presenta numerosi vantaggi rispetto ai metodi di attuazione elettrostatica, termica o piezoelettrica. È importante sottolineare come i materiali usati comunemente nella fabbricazione dei MEOMS (Micro-Opto-Electro-Mechanical System), come il silicio e l’ossido di silicio, non presentino una suscettività magnetica sufficiente per indurre un’apprezzabile magnetizzazione interna. Diversi gruppi di ricerca hanno comunque dimostrato come sia possibile realizzare strutture micro-mecaniche superficiali o “bulk” utilizzando sottili strati di materiali magnetici. Nei lavori riportati in letteratura, il polisilicio ed il silicio cristallino sono usati rispettivamente come superficie riflettente e come materiale elastico. Nei microspecchi con superficie riflettente in polisilicio, la rugosità superficiale e gli stress sono i parametri critici. Le maggiori difficoltà riguardano il controllo dello spessore della parte elastica, soprattutto quando sono imposte limitazioni nelle dimensioni del dispositivo. Il processo fabbricativo risulta molto complesso a causa della particolare geometria che si deve adottare. È preferibile, se si vuole realizzare un dispositivo integrato e con ampio angolo di deflessione, utilizzare un processo fabbricativo più semplice e robusto, servendosi di materiali che abbiano un comportamento magnetico e meccanico più performante.

Problematiche relative alla diagnostica dei reperti: in questo settore la principali problematiche da risolvere saranno legate alla capacità di saper utilizzare al meglio le potenzialità delle tecniche di diagnostica non distruttiva, in modo da ridurre al minimo il numero finale di campionamenti distruttivi, senza con questo ridurre la completezza delle analisi, in quanto si riduce solo il numero di campionamenti inutili (in quanto ripetizioni o ad informazione nulla). Questa ottimizzazione andrà fatta su reperti di scarso significato, in funzione poi del trattamento di materiale pregiato. In particolare poi per georadar e tomografia geoelettrica le principali problematiche sono essenzialmente legate alla dimensione dei reperti recuperati. Infatti, su materiali di ridotte dimensioni diventa difficoltoso riuscire ad elaborare le emissioni delle onde e ad ottenere dei risultati attendibili. Questo limite rientra in quelli delle principali tecniche analitiche attualmente in uso.

Problematiche relative al trattamento dei reperti: per i trattamenti di pulitura e protezione si prevede di utilizzare prodotti chimici già presenti sul mercato. Come già accennato però tali prodotti sono quasi sempre sintetizzati per campi applicativi diversi dal restauro. Il loro utilizzo nel campo della conservazione dei Beni Culturali richiede quindi quasi sempre una loro riformulazione, con particolare riguardo per l’aspetto viscosimetrico e reologico in modo ad esempio da limitare l’azione dei biocidi e più in generale degli agenti pulenti agli strati superficiali degradati, e da rendere invece quanto più possibile elevata la capacità di penetrazione nei substrati dei consolidanti. Anche
l’acidità dei prodotti da utilizzare sui reperti va sempre controllata e se necessario modificata; infatti i materiali lapidei, sia naturali che artificiali, sono spesso sensibili ai prodotti acidi, per cui è importante che i prodotti utilizzati per la protezione abbiano un pH controllato, possibilmente compreso fra 5 e 8.

Diversamente per la pulitura può essere a volte anche necessario far ricorso a prodotti acidi, ma in questo caso bisogna controllare accuratamente che la loro azione si limiti ai prodotti di degrado e non interessi il bulk sano del materiale. Inoltre l’impiego successivo di due categorie di prodotti chimici (prima per la pulitura e poi per la protezione/consolidamento del reperto) può comportare dei problemi di interazione, nonostante gli abbondanti lavaggi che sempre devono seguire un intervento di pulitura. Sarà di conseguenza necessario indagare le possibili reazioni fra biocidi e agenti di pulitura con i polimeri protettivi/consolidanti.

Per quanto riguarda la camera TUCHEB le principali problematiche di ricerca scientifica da affrontare sorgono da due aspetti fondamentali. Un primo ordine di problematiche da affrontare riguarda la progettazione e realizzazione della camera. La scelta dei materiali, degli strumenti operativi (radiatori a microonde, sonda termica), dei materiali di base, delle valvole e delle pompe per la tenuta del vuoto, dei sensori chimici, termici e barometrici, non è banale e fa parte di un’attenta valutazione di tutti i fattori in gioco, e di una concreta sperimentazione della funzionalità del sistema nelle condizioni di impiego simulato.

D'altra parte occorre valutare i parametri operazionali per il trattamento ottimale di manufatti archeologici di ambiente marino. Dopo la realizzazione di un primo prototipo di camera saranno studiati una serie di casi pratici di pulitura e consolidamento di materiali di origine marino portanti incrostazioni tipiche dei manufatti archeologici di tipo lapideo, metallico, ceramico, ligneo. Saranno inoltre valutati una serie di sistemi biocidi e di condizioni di impiego per eliminare microorganismi, specie fungine alghe etc. da manufatti archeologici ritrovati in mare.

Problematiche relative alla conservazione dei reperti: i principali limiti legati allo studio delle analisi dei parametri chimico-fisici per il controllo del microclima dell’ambiente in cui vengono conservati i reperti sono essenzialmente di tipo statistico, come indicato nella normativa UNI. Infatti bisogna tenere presente che i parametri in esame, quali temperatura o umidità, risultano particolarmente sensibili a variazioni significative, anche nelle 24 h, con il generarsi di gradienti problematici da un punto di vista analitico e interpretativo. L’aumento dei punti di misura, degli intervalli di tempo delle rilevazioni e del periodo totale di indagine riducono questi rischi e rendono l’analisi significativa e validata.

1.2.3.4 - Problematiche inerenti la costruzione di un sistema informativo distribuito

Un fattore importante di successo per il progetto è quello di studiare e mettere a punto una serie di tecnologie hw/sw e di connettività che consentano di acquisire, sulla rete di ricerca coinvolta (ma anche all’esterno di essa), tutte le informazioni provenienti dalle campagne sperimentali in situ.
La complessità di tale rete risiede nella forte diversificazione delle funzioni dei centri di ricerca in rete e delle loro funzionalità operative che si traducono in una forte interconnessione che crea un accrescimento della conoscenza collettiva del distretto tecnologico.

In particolare il sistema nel suo complesso dovrà supportare richieste eterogenee di accesso ai dati e garantire l’usabilità e la correlazione di formati dati estremamente complessi e differenziati. Le problematiche di ricerca relative all’architettura del sistema e della sua rete di relazioni e comunicazioni di tipo real time punto-punto (ad esempio acquisizione in sito e centro di visualizzazione dati), o broadcasting delivery dei dati a tutta la comunità scientifica in contemporanea durante lo svolgimento dell’indagine in sito, o di natura asincrona durante le fasi di elaborazione e ricerca off-line dei differenti centri di ricerca afferenti o collegati al distretto durante un’indagine o un periodo di monitoraggio operativo o in fine per la fruizione e la divulgazione del dato al largo pubblico o alle comunità scientifiche internazionali interessate al tema dell’archeologia subacquea.

A seguito di queste considerazioni possiamo riassumere questo filone di R&S nelle seguenti macro categorie:

− **Problematiche di architettura di sistema.** L’eterogeneità dei centri e delle funzioni che caratterizzano il sistema sarà affrontata con tecniche di progettazione di architetture distribuite. In base ai recenti indirizzi di progettazione in termini di architetture distribuite eterogenee multitier, sarà prevista la separazione tra la parte di processing e di catalogazione dei dati (parte back-end OR2, OR5, OR1) dagli aspetti di fruizione e interfaccia (parte front-end OR4). Tale separazione è assicurata da appositi strati SW middleware o gateway che consentono di interfacciare i sottosistemi front-end e back-end (es. Microsoft .net e XMLSoap; Java J2EE/J2SE). Un’altra problematica dell’architettura e del sistema riguarda la sua capacità di rispondere entro tempi ritenuti accettabili. Vista la natura distribuita del sistema, l’efficienza non sarà mai un requisito garantito ma è sicuramente un obiettivo a cui tendere, in particolare tale problematica sarà affrontata attraverso lo studio di tecniche di compressione, riduzione o stratificazione del dato, in termini di ottimizzazione/uso intelligente della banda passante in funzione delle fasi operative del sistema (fasi real time e fasi off-line). Infine resta la problematica della connessione, proprio perché il mix di tecnologie da impiegare prevedono connessioni il più possibile di tipo wireless. A tal fine si adotteranno competenze di networking con uso anche di connessioni satellitari, per le quali ancora non sono state individuate soluzioni efficaci in contesti di utilizzo critici equivalenti a quelli del progetto.

− **Problematiche di visualizzazione.** La natura 3D dei nuovi dati acquisiti e la loro risoluzione prevista nell’OR1 richiede richiede tecnologie di visualizzazione avanzate in grado di far percepire gli scenari in termini non solo qualitativi ma anche metrici. Una infrastruttura di questo tipo è un Virtual Reality Centre basato su sistemi di visual simulation real time pensato in termini innovativi che integrino
tecnologie spesso non convergenti come la Realtà Virtuale, Augmented Reality, Set Virtuali, tecniche di digitalizzazione su standard TV (DvBH) . Infatti la componente real time e la natura video di molte delle informazioni di campo implicano una spinta integrazione tra il mondo reale ed il mondo visivo simulato propri del tema trattato e cioè’ dell’archeologia subacquea. In particolare le problematiche contenute nell’OR4 sono derivate dal particolare contesto applicativo ma anche dalla natura stremante eterogenea dei dati da correlare e rendere visivamente ed operativamente sinergici. Le problematiche da affrontare riguardano pertanto le tecniche di costruzione dei dataset, per la fruizione in ambiente immersivo sia in post-produzione (gli scenari sono costruiti dal dataset in un momento successivo al periodo di acquisizione) che real-time (gli scenari sono costruiti nello stesso momento in cui vengono acquisiti).

− **Problemsiche di integrazione.** Affrontare tale problematica significa studiare il modo di integrare le acquisizioni effettuate dal campo, elaborarle in modo da inserire in real time la maggior parte delle informazioni all’interno della base conoscitiva del sistema per una loro analisi storico tecnica. In particolare la parte rilevante di questa integrazione è costituita da problematiche di correlazione dei dati che riguarderanno la natura eterogenea dei dati acquisiti da strumenti differenti ed in epoche diverse (una problematica analoga a quella oggi in essere da dati di Earth Observation di provenienza satellitare con strumenti di bordo differenti in diverse epoche di acquisizione ma in ogni caso correlabili) e soprattutto eterogenei per tipologia (tridimensionali, bidimensionali, puntuali, analitici, tabellari, etc..). La grande problematica è dunque quella di definire ed adottare soluzioni che mirano a procedure/metodologie che rendano integrabile in dato nella maniera più ampia possibile.

1.2.3.5 - Rappresentazione della conoscenza e suo utilizzo.

Tali problematiche di ricerca si sviluppano lungo i seguenti quattro filoni principali:

− rappresentazione della conoscenza mediante ontologie e basi di conoscenza. Questa problematica di ricerca riguarda: modelli, formalismi e strumenti per la rappresentazione di ontologie finalizzate al wrapping dei dati da sorgenti eterogenee e alla integrazione di sorgenti informative eterogenee. Le ontologie guidano, da un lato, i processi di estrazione della conoscenza dalla sorgente informativa contenente i cataloghi presenti nei vari siti e, dall’altro lato, i processi di integrazione delle differenti sorgenti in un livello riconciliato, la base di conoscenza, contenente la rappresentazione di tutta la conoscenza disponibile. Le ontologie devono fornire una rappresentazione della conoscenza, contenuta nelle varie sorgenti, in grado di fornire le viste storico-artistiche, logistica, temporale. In questa tematica di ricerca ricadono, inoltre, le problematiche riguardanti:

 o le modalità di interrogazione della base di conoscenza al fine della costruzione delle viste storico artistiche, logistiche, temporali;
 o le categorie di rappresentazione degli aspetti dinamici della realtà;
il bilanciamento tra potenza espressiva e costi di calcolo.
- gestione delle informazione sul patrimonio sommerso intesa come studio degli standard per la rappresentazione dei beni culturali dell’archeologia subacquea e definizione delle modalità di rappresentazione di questi standard mediante ontologie al fine della fruizione del patrimonio artistico sommerso mediante una ontologia di inquadramento storico-artistico. Tale ontologia deve costituire un arricchimento del modello di descrizione dei sistemi informativi di catalogo. Il processo di definizione implica l’approfondimento e la modellazione di aspetti epistemologici ancora non trattati nei quali giocano ruoli complessi la dimensione spaziale e, soprattutto, quella temporale;
- mantenimento della consistenza interlivello. Questa problematica di ricerca riguarda le modalità di allineamento dei livelli sistema di catalogo integrato ed ontologico. Obiettivo principale è riuscire a mantenere la coerenza tra le due rappresentazioni continuando a mantenere separate le due rappresentazioni sia a livello intensionale che estensionale; tali allineamenti sono indispensabili nel momento in cui occorrerà modificare elementi dell’ontologia o ricercare elementi ontologici nello schema integrato;
- accesso alla base di consoscenza tramite risorse applicative. Questa problematica di ricerca riguarda le modalità d’uso di dispositivi di diversa natura per l’accesso e la fruizione dei contenuti della knowledge base. In questa problematica ricadono anche le tematiche inerenti il problema tecnologico relativo alla gestione di dispositivi portatili ed alla configurazione in esercizio di una rete interattiva di fruizione per informazioni multimediali.

1.2.3.6 - Modelli culturali e scientifici per la validazione dei processi
Questa parte del progetto è orientata alla creazione di modelli innovativi di supporto ai processi di knowledge based, finalizzati a favorire il trasferimento della ricerca di base a sostegno della ricerca, coagulando intorno al sistema universitario una filiera specializzata nella definizione dei processi cognitivi e nelle applicazioni informatiche collegate, finalizzati al mondo dei beni culturali.
Lo studio e la definizione di modelli e modalità di certificazione del dato scientifico nell’area dei beni culturali costituiscono un elemento di innovatività, finalizzato alla validazione dei processi.
Il progetto in dettaglio punta in primo luogo alla creazione ed al rafforzamento dei legami tra il mondo accademico e quello aziendale in materia di ricerca e sviluppo, alimentando lo sviluppo qualificato e la crescita delle aziende ICT sul territorio locale e coinvolgendo aziende non regionali su linee di ricerca e di produzione innovative. Il cuore della proposta progettuale consiste nel trasformare le opportunità offerte dai risultati della ricerca di base in nuovi progetti aziendali ed in imprese innovative in grado di generare profitto e rivitalizzare l’intera filiera.
1.3 - Durata
30 mesi a partire dal 01/01/2006

1.4 - Luoghi di svolgimento del progetto
Crotone, Cosenza, Rende (Cs), Arcavacata di Rende (Cs), Reggio Calabria, Porto Salvo di Vibo Valentia (VV), Catanzaro.

1.5 - Responsabile del progetto
Dott. Marcello Pappagallo, nato a Senigallia il 19/08/1959, laureato in Fisica con indirizzo Cibernetico, Delivery Manager di Infobyte S.p.A.
2 – Obiettivi attività e tempistica

2.1 - Struttura del prodotto/processo/servizio
Il presente progetto di ricerca vuole, sulla base della definizione di procedure e metodologie, mettere a punto sistemi, strumenti e servizi innovativi nell’ambito dell’archeologia, con particolare riferimento al patrimonio sommerso.
L’esigenza principale riguarda il miglioramento delle tecniche di identificazione, di catalogazione, restauro e conservazione, oltre che la messa a punto di sistemi e servizi utili alla valorizzazione dell’intero sistema dell’archeologia subacquea.

In questo contesto, le macro attività di ricerca sono individuate nella tabella sottostante che riporta i titoli degli OR previsti.

OR1	Definizione di metodi, sistemi e strumenti per l’individuazione e il rilievo in situ dei beni archeologici sommersi
OR2	Studio e definizione di modelli innovativi per la progettazione e la pianificazione di interventi nel settore dell’archeologia sommersa
OR3	Sistemi per il recupero, il rilievo e il trattamento conservativo in superficie
OR4	Sistema di Gestione, Monitoraggio e Controllo RealTime e di Presentazione e Disseminazione dei risultati Scientifici
OR5	Un Sistema Knowledge-based per la Catalogazione e l’Accesso ai Beni dell’archeologia subacquea
OR6	Integrazione dei risultati ottenuti e realizzazione del dimostrativo
OR7	Studio e definizione di modelli innovativi knowledge based per il trasferimento tecnologico della ricerca di base per i beni culturali

Tabella 1 - Obiettivi Realizzativi del progetto di ricerca

Le modalità di interazione reciproca tra questi OR è riportata nella figura sottostante.

Lo schema di lettura vede l’OR1 strettamente collegato al sito nella fase di individuazione dello stesso e dei beni archeologici sommersi che lo caratterizzano. E’ prevista una interazione con l’OR4 nella fase di trasmissione dei dati rilevati e trasmessi alla cabina di regia (in tempo reale o in differita) che a sua volta provvede a inviare i comandi di ritorno alla strumentazione di bordo.
I dati di configurazione degli strumenti a bordo vengono preliminarmente comunicati ed utilizzati dall’OR2 nella fase di pianificazione delle missioni; infatti l’OR2 prevede l’analisi dei dati e la pianificazione delle missioni per il recupero dei reperti. In tal senso le decisioni prese a livello di OR2 divengono un input per la cabina di regia e quindi per l’OR4 che da questi trae le specifiche per l’intervento in situ tramite l’invio dei comandi e delle informazioni opportune rispettivamente alla strumentazione ed agli uomini a bordo.
I dati in output dell’OR2 vengono trasmessi anche all’OR5, che funge da raccoglitrice di tutte le informazioni circolanti ed utili per alimentare un data warehouse della conoscenza sulle missioni, sui siti, e sulle informazioni storico-culturali inerenti i beni sommersi ed i beni non sommersi ad esso collegati (informazioni provenienti anche da fonti esterne quali i Sistemi Informativi di Catalogo). In questo OR è prevista la gestione di un database multimediale. Inoltre, le informazioni gestite a livello di OR5 saranno anch’esse di supporto alle funzioni dell’OR2 nella fase di pianificazione delle missioni di recupero.

L’OR3 agisce sul reperto riportato in superficie dal sito per effettuare in primo luogo una analisi di provenienza spazio-temporale sfruttando dati gestiti all’interno dell’OR3 e presenti nella knowledge-base dell’OR5, ed in secondo luogo per effettuare le operazioni di restauro necessarie e di messa in sicurezza del reperto dopo il restauro, comunicando i risultati delle analisi e dello stato di degrado del reperto alla knowledge-base dell’OR5.

Le risultanze dell’OR3 saranno inviate secondo opportuni formati all’OR4 per la fase di fruizione da parte degli utenti secondo le tecniche ed i canali che l’OR4 metterà a disposizione.

L’OR4 si interfaccia con tutti gli OR che prevedranno l’utilizzo di strumentazione in grado di fornire dati, immagini o altre informazioni virtualizzabili tramite un opportuno strato software. Inoltre la cabina di regia prevista nell’OR4 consentirà anche il monitoraggio e l’invio di comandi real time alla strumentazione interfacciabile.

L’OR4 fungerà inoltre da interfaccia principale verso le diverse categorie di utenza: la comunità scientifica, i decisori, e gli utenti finali.

La comunità scientifica beneficerà della fruizione di un DB Multimediale popolato con le immagini video indicizzate, della possibilità di interagire in real time con strumenti e dati provenienti dal campo; gli utenti decisori potranno dare disposizioni basandosi sui dati precedentemente illustrati, oltre che sfruttando le potenti tecniche di reasoning messe a disposizione dall’OR5 ed applicate alla knowledge-base in esso realizzata. I decisori, una volta acquisite le informazioni necessarie, interagiranno sul campo con la strumentazione messa a disposizione dalla cabina di regia.

Gli utenti finali beneficeranno dei risultati ottenibili con il SW per la gestione della generazione di contenuti multimediali, i quali una volta predisposti, potranno essere fruiti in modalità multicanale.

L’OR6 prevede la sperimentazione di tutti i modelli, le tecniche, gli strumenti ed il software realizzati in tutti i precedenti OR, ripercorrendo tutto il ciclo di vita previsto per uno o più reperti, dalla fase di individuazione (il sito potrà essere individuato tramite l’applicazione delle tecniche sviluppate nei vari OR ed in particolare l’OR1, o tramite indicazione diretta di un soggetto esterno quale la sovrintendenza ai beni culturali se si dovesse decidere di effettuare la sperimentazione su un reperto già noto ma non ancora recuperato) fino a quella di recupero, restauro, messa in sicurezza e fruizione da parte di tutte le categorie di utenti previsti dal progetto.

Infine l’OR7 prevede la definizione di modelli per la validazione scientifica e la certificazione del dato e la realizzazione di un sistema di supporto alle decisioni.
2.2 - Obiettivi realizzativi e Attività

Nell’esposizione che segue si descriveranno gli obiettivi realizzativi del progetto, con le rispettive attività di ricerca industriale e di sviluppo precompetitivo.

In particolare, per ogni OR saranno riportati:
- la descrizione dell’attività di ricerca;
- lo stato dell’arte in materia;
- la suddivisione in Attività con relativa descrizione;
- considerando che il progetto sarà realizzato da alcuni dei soci della Società Consortile (soggetto proponente), per ogni OR e attività saranno indicati i risultati, il soggetto responsabile, i partner coinvolti;
- input ed output dell’OR;
- collegamenti con gli altri OR del progetto
- i riferimenti bibliografici.

Per quanto riguarda le attività di coordinamento del progetto, queste saranno articolate in modo da poter garantire in ogni momento il controllo dell’attività di ricerca, in conformità a quanto predisposto in fase progettuale, sia sul piano dell’aderenza scientifica ai contenuti ed agli obiettivi previsti, sia sul piano economico-amministrativo.

Per tale ragione il coordinamento sarà strutturato come un insieme di attività trasversali ai temi della ricerca ed avrà la stessa durata, in termini di tempo, delle attività di ricerca previste negli OR, seguendone l’andamento e promovendo indirizzi operativi.

In particolare per il coordinamento scientifico del progetto si prevede di costituire un “Comitato Tecnico di Progetto” composto da un membro di ciascuno dei partner responsabili di OR. All’interno di tale comitato è individuato il Responsabile di progetto.

Per gli indirizzi di carattere tecnico-scientifico il Comitato Tecnico di Progetto farà riferimento al Comitato Tecnico Scientifico della Società Consortile.
2.2.1) OR1: Definizione di metodi, sistemi e strumenti per l’individuazione e il rilievo in situ dei beni archeologici sommersi

2.2.1.a) Descrizione dell’OR1

L’obiettivo realizzativo OR1 ha come finalità la definizione e la sperimentazione di tecniche e strumenti innovativi per l’identificazione, il posizionamento, la descrizione e la documentazione dei siti archeologici sommersi comprese le cave (importanti per il valore archeologico – storico che rappresentano e soprattutto per le indicazioni specifiche – tecniche che forniscono sulla subsidenza ed innalzamento del mare).

L’attività di ricerca permetterà la messa a punto di un sistema di rilievo (individuando le tecniche che meglio rispondono allo scopo) e di un sistema di componenti software (derivate dai diversi sistemi di indagine), che in associazione ad una base dati espressamente concepita e progettata allo scopo, permetterà di gestire tutte le informazioni raccolte durante le attività di campo e/o da fonti storiche, e, al contempo, fornirà supporto alle decisioni per la scelta della tipologia di indagine o approccio necessari al rinvenimento del sito. Inoltre, saranno sviluppate delle opportune tecniche per il rilievo 3D sottomarino che condurranno alla realizzazione di un prototipo dimostrativo di uno scanner 3D subacqueo. Il prodotto consentirà di rilevare la geometria tridimensionale di reperti archeologici e relitti sottomarini senza la necessità di rimuoverli dal fondale marino. In tal modo si offrirà agli archeologi una tecnica nuova e non intrusiva per studiare, analizzare ed archiviare i beni culturali sommersi. Lo scanner sarà composto da due moduli: uno di acquisizione, contenente la strumentazione ottica, e uno di supporto, contenente l’hardware di controllo e le batterie; sarà trasportabile da un sub e sarà alimentato a batteria per evitare la necessità di restare collegati con la superficie o con un’imbarcazione. Il progetto dovrà quindi consentire da un lato di sperimentare e confrontare differenti tecniche per individuare i siti archeologici sommersi, dall’altro di mettere a punto un sistema integrato di componenti software e strumentali ad hoc per le indagini nel campo archeologico marino.

Si riporta di seguito una tabella riepilogativa delle attività previste nell’ambito dell’OR1.

<table>
<thead>
<tr>
<th>Attività</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1.1</td>
<td>Definizione di metodologie e procedure per l’individuazione dei beni sommersi</td>
</tr>
<tr>
<td>A.1.2</td>
<td>Definizione di metodi e tecniche per la ricognizione ed il rilievo di cave</td>
</tr>
<tr>
<td>A.1.3</td>
<td>Progettazione di un sistema integrato per l’individuazione dei beni sommersi</td>
</tr>
<tr>
<td>A.1.4</td>
<td>Realizzazione del sistema integrato per l’individuazione dei beni sommersi e sperimentazione</td>
</tr>
<tr>
<td>A.1.5</td>
<td>Sviluppo di tecniche per il rilievo 3D sottomarino</td>
</tr>
<tr>
<td>A.1.6</td>
<td>Sviluppo di un prototipo dimostrativo di uno scanner 3D subacqueo</td>
</tr>
<tr>
<td>A.1.7</td>
<td>Definizione e sviluppo di protocolli di comunicazione/trasmissione dati real time</td>
</tr>
</tbody>
</table>

Tabella 2 – Elenco attività OR1
2.2.1.b) Stato dell’arte dell’OR1

Le principali problematiche, nell’individuazione di reperti archeologici, sono connesse al fatto che le tecnologie di indagine subacquea normalmente impiegate per le ricerche nascono come derivazione da tecniche di indagine geofisica marina finalizzata alle ricerche petrolifere o attività connesse (posa di cavi, strutture, ecc).

Pertanto, sino ad ora, sono inesistenti studi e ricerche ad hoc per migliorare tali tecnologie e renderle più congeniali alla ricerca di siti archeologici. Attualmente non esiste sul panorama nazionale ed internazionale un sistema specifico in grado di operare per la ricerca dei beni archeologici sommersi. Le indagini vengono effettuate mediante l’utilizzo di sistemi side scan sonar integrati con dati multi-beam, subbottom profiler e successivamente all’interpretazione dei dati con la verifica mediante veicoli filoguidati (ROV) o ispezioni subacquee dirette. Naturalmente non sempre ciò che viene interpretato dai geofisici è riconducibile a reperti archeologici, sennonché le successive ispezioni visive si dimostrano un dispendio di risorse economiche e di tempo.

Con la realizzazione del programma di ricerca sarà possibile individuare le migliori tecnologie, definire le tecniche e le metodologie più idonee, sviluppare un prototipo di scanner 3D per rilevare la geometria tridimensionale dei reperti sommersi. L’esperienza acquisita dalla Cooperativa Nautilus in oltre venti anni di attività nel campo della geofisica marina e nell’ambito del progetto Archeomar (censimento dei beni archeologici sommersi nelle Regioni Campania, Calabria, Puglia e Basilicata), da la possibilità di discretizzare tutta una serie di target (reperti archeologici, scogli, rifiuti vari, fondo duro e mobile etc.) e di creare una banca dati apposita. Inoltre grazie alla collaborazione della Società Demetra sarà possibile aggiungere alla banca dati di cui sopra importanti informazioni per quel che riguarda la coltivazione mineraria tramite appunto il censimento e il rilievo delle cave.

La banca dati interfacciata con il software da realizzare permetterà di creare un sistema di supporto alle decisioni che accompagnerà l’attività dei geofisici nell’individuazione dei beni archeologici sommersi. Inoltre, con l’archiviazione automatica dei dati acquisiti si rileverà un vantaggio sia dal punto di vista economico che dal punto di vista della validazione dei dati.

Il sistema sarà unico nel suo genere, permetterà di avere delle economie rilevanti nel campo delle ricerca dei beni archeologici sommersi. La realizzazione del software darà da un lato la possibilità ai soggetti proponenti di essere competitivi in un settore in grande espansione, e dall’altro alla pubblica amministrazione la possibilità di procedere alla ricerca di beni archeologici sommersi a costi più contenuti rispetto a quelli attualmente praticati.

Per quanto concerne la realizzazione di nuovi strumenti è da segnalare che attualmente non esistono sul mercato scanner 3D subacquei. Lo scanner 3D subacqueo rappresenta un’innovazione tecnologica per l’archeologia subacquea che si presta a diverse applicazioni (analisi, creazione di copie, fruizione digitale) e che pertanto potrebbe apportare un notevole contributo alla crescita del mercato delle strumentazioni ad alta tecnologia per questo settore.
Il mercato di sbocco di questo prodotto è rappresentato dal panorama mondiale degli istituti e dei centri ricerca sull’archeologia subacquea che, per la sua specificità e vastità geografica, rappresenta un mercato ad alto valore aggiunto che potrà garantire un’elevata redditività del prodotto.

Il peso dell’attività di sviluppo dello scanner 3D subacqueo è relativamente ridotto sulla scala del progetto di ricerca industriale proposto. Nonostante ciò, il livello di innovazione tecnologica e l’originalità di questa particolare proposta sono particolarmente elevati.

Alcune delle soluzioni tecniche che saranno adottate nella progettazione dello scanner potranno essere facilmente protette con brevetti, mentre lo scanner sarà valorizzabile sia con un’opportuna campagna di licensing, sia con processi di trasferimento tecnologico tramite l’avvio di imprese spin-off o start-up.

2.2.1.c) Attività dell’OR1

A.1.1 – Definizione di metodologie e procedure per l’individuazione dei beni sommersi

- **Descrizione**

Partendo dai punti critici e dai limiti individuati, nelle esperienze pregresse, la presente attività intende sperimentare e confrontare diverse tipologie di indagine e un sistema integrato di gestione delle attività di ricerca, al fine di definire una metodologia standard e procedure per l’individuazione di siti archeologici sommersi. La sperimentazione avverrà in aree pilota identificate in accordo con le Autorità competenti.

Le tecnologie da utilizzare si basano principalmente sull’impiego di sistemi: side scan sonar, a differenti range operativi, sub bottom profiler, multibeam, magnetometri, Veicoli a Guida Remota (ROV) e operatori subacquei con tecnica ARA e con tecnologia buddy Inspiration, integrati con diversi sistemi di posizionamento, GPS, DGPS (sky fix) e base ultracorta per il posizionamento delle attrezzature immerse e dei subacquei.

Questa attività sarà sviluppata in tre fasi:

1. **Fase preliminare**

 In questa fase si provvederà:

 a) Raccolta della documentazione esistente

 - acquisizione della cartografia di base
 - recupero dei dati raccolti in progetti pregressi;
 - raccolta sistematica delle informazioni documentarie e iconografiche (compresa l’acquisizione in formato digitale di fotografie, planimetrie, rilievi, cartografie, ecc.) conservati negli archivi e nelle biblioteche;
 - raccolta sistematica delle informazioni orali recuperabili nei luoghi.

 b) Realizzazione di schede preliminari per la raccolta dei dati
2 Fase di rilievo
Sulle aree campione individuate nella fase precedente, di concerto con le Autorità competenti, sarà effettuata una campagna di indagine archeologica finalizzata alla ricerca ed individuazione di nuovi siti archeologici ed al censimento (posizionamento, descrizione, classificazione, raccolta di documentazione fotografica e video, rilievi strumentali) dei siti. Nel corso di questa campagna di ricerca verranno sperimentati e testati diverse tecniche e i sistemi tecnologici al fine di individuare i sistemi che più si adattano allo scopo. La campagna di indagine sarà realizzata con l’utilizzo della nave da ricerca oceanografica “Cooperhaut-Franca” equipaggiata con la strumentazione ed i sensori necessari all’acquisizione dei dati: side scan sonar, magnetometro, sub-bottom profiler, multi-beam, ROV.

3 Fase propositiva
L’ultima fase dell’attività 1.1 si occuperà della elaborazione dei dati e della definizione delle metodologie e delle procedure, con indicazione delle tecnologie, più idonee alla ricerca dei siti archeologici. Saranno confrontati i vari sistemi e le tecniche utilizzate nella fase di rilievo. Dal confronto si individueranno le soluzioni metodologiche e tecnologiche che più si adattano alla ricerca di settore.

- Tipo attività: RI

A.1.2 – Definizione di metodi e tecniche per la ricognizione e rilievo di cave

- Descrizione
L’attività prevede tramite l’utilizzo di rilievi realizzati con tecniche integrate laser-scanning, fotogrammetria digitale, topografia e GPS per la realizzazione di modelli 3D computerizzati il rilievo delle cave estrattive comprese quelle sommerse. L’integrazione tra laser-scanning e fotogrammetria è uno dei metodi di rilevamento oggi più avanzato e garantisce velocità e accuratezza di risultati, sfruttando la velocità di acquisizione del laser scanner alla capacità descrittiva delle immagini fotografiche.
L’attività sarà articolata nelle seguenti azioni:

a. **Analisi di campo (raccolta dati, mappe nautiche, reportage fotografico, censimento cave)**

Verrà svolta un’analisi accurata di ciascuna cava delineando per quanto possibile, le tecniche estrattive, il metodo di coltivazione, il trasporto dei materiali litici, la destinazione d’uso dei materiali. Tale fase di rilevazione sarà corredata da un reportage fotografico per ciascuna cava e da un libretto delle misure delle attività di taglio e dei materiali litici rimasti in posto.

b. **Elaborazione ed acquisizione dati**

Le cave verranno georeferenziate mediante *global positioning system*, ovvero adoperando il GPS, per permettere una corretta georeferenziazione delle cave stesse, vista la necessità che vi è di attribuire delle coordinate precise, soprattutto per l’elevata erosione costiera, essendo la maggior parte delle cave ubicata sulla fascia costiera, pericolosa per la sua caratteristica di falesia.

Quindi l’acquisizione ed elaborazione di dati 3D avverrà attraverso l’utilizzo di strumentazioni altamente sofisticate di cui la società Demetra è dotata, tra cui i Laser scan LMS-Z360 e LPM-800HA.

- **Tipo attività: RI**

A.1.3 – Progettazione di un sistema integrato per l’individuazione dei beni sommersi

- **Descrizione**

Il sistema software da progettare avrà l’obiettivo di migliorare in termini qualitativi e quantitativi le capacità nella ricerca dei siti archeologici subacquei con benefici per l’intero patrimonio archeologico sommerso con l’evidente possibilità di tutelare e valorizzare i reperti archeologici individuati.

Strutturato in diverse componenti hardware e software, il sistema offrirà le funzionalità necessarie per assistere il team di lavoro nelle situazioni più difficili, e per migliorare in generale l’organizzazione delle informazioni che via via verranno raccolte durante le attività di indagine in mare.

In questa fase saranno studiati e progettati i seguenti moduli:

1. software per il supporto all’interpretazione delle anomalie rilevate dal Side Scan Sonar;
2. sistema integrato di software per il quick-look, la gestione e l’organizzazione dei dati di campo subito dopo l’effettuazione dei rilievi in una banca dati multimediale.

L’attività sarà articolata nelle seguenti azioni:
a) **Progettazione del software di supporto all’interpretazione delle anomalie rilevate dal Side Scan Sonar;**

Saranno progettate delle applicazioni software in grado di valutare le anomalie rilevate dal side scan sonar riconducibile a reperti archeologici. Il software sarà interfacciato con una banca dati di sonogrammi, appositamente realizzata, da utilizzare come punti “bersaglio”, che decodifichi le anomalie rilevate al fine di supportare i geofisici nella scelta dei siti di interesse.

Il software riguarderà l’interfacciamento della strumentazione, l’elaborazione dei dati, l’automatizzazione del flusso di lavoro, la configurazione delle diverse componenti sia hardware che software.

b) **Progettazione di un sistema integrato di software per la gestione e l’organizzazione dei dati di campo subito dopo l’effettuazione dei rilievi**

Si perverrà alla configurazione ed integrazione di un software per la raccolta, la gestione, l’elaborazione e la memorizzazione dei dati. Il software sarà finalizzato alla realizzazione di un sistema di integrazione che permetta la creazione automatica delle “cartelle” con i dati acquisiti organizzati e schedati; tali dati multimediali saranno arricchiti con una serie di metadati inerenti la rappresentazione di informazioni quali la soglia di confidenza di riconducibilità del rilevamento ad un reperto archeologico, dati inerenti le stime su costi e personale necessari per il recupero, dati inerenti la qualità del rilevamento (qualità della immagine, opacità e torbidità dell’ambiente marino durante la fase di acquisizione, condizioni meteo), dati inerenti la configurazione della strumentazione, etc ...

Lo strumento software che supporterà la fase di quick-look consentirà una scrematura delle informazioni prodotte in fase di rilevazione e che dovranno essere forniti in input alle attività dell’OR.4 anche in modalità real time (con evidentì vantaggi in termini di traffico dati da trasmettere da bordo verso la cabina di regia a terra); in tal senso costituirà un vero e proprio strumento di supporto alla caratterizzazione della tipologia di reperto e di alimentazione di una base dati multimediali opportunamente progettata (posizionamento, descrizione, classificazione, raccolta di documentazione fotografica e video, rilievi strumentali).

Alcuni dati, quali i parametri di configurazione della strumentazione, saranno inviati in input all’OR.2 per la fase di Knowledge Management deputata alla pianificazione del recupero.

- **Tipo attività: SP**

A.1.4 – **Realizzazione del sistema integrato per l’individuazione dei beni sommersi e sperimentazione**

- **Descrizione**
In questa fase saranno implementati, sperimentati e verificati i moduli progettati nell’ambito dell’attività 1.2.
In particolare l’attività sarà articolata nelle seguenti azioni:

a) **Realizzazione del software di supporto all’interpretazione delle anomalie rilevate dal Side Scan Sonar**;

Saranno sviluppate le applicazioni software in grado di valutare le anomalie rilevate dal side scan sonar riconducibile a reperti archeologici, progettate in precedenza.

b) **Realizzazione di un sistema integrato di software per la gestione e l’organizzazione dei dati di campo subito dopo l’effettuazione dei rilievi**

Sarà realizzato il sistema progettato nell’ambito dell’attività precedente.

c) **Prima sperimentazione del software sul campo**

Nelle aree campione sarà effettuata una campagna di indagine archeologica. Nel corso di questa campagna di ricerca verranno sperimentati e testati i software precedentemente realizzati. La campagna di indagine sarà realizzata con l’utilizzo della nave da ricerca oceanografica “Coopernaut-Franca” equipaggiata con la strumentazione ed i sensori necessari all’acquisizione dei dati: side scan sonar, magnetometro, sub-bottom profiler, multi-beam, ROV.

d) **Elaborazione e confronto dei dati**

L’attività verterà sulla elaborazione dei dati acquisiti. Saranno interpretati i fotomosaici side scan sonar e gli altri dati strumentali. I dati interpretati con la metodologia classica delle interpretazione dei dati geofisici saranno confrontati con le risultanze ottenute dal software predisposto.

e) **Studio, revisioni e miglioramenti del software**

Sulla base delle risultanze dell’attività precedente si procederà alla revisione delle funzionalità del software e alla valutazione della sua efficacia. Si procederà alle eventuali aggiunte di funzionalità.

f) **Seconda sperimentazione del software sul campo**

Nel corso di queste campagne di ricerca verrà definitivamente testato il software precedentemente realizzato. La verifica sarà eseguita procedendo ad un rilievo classico attraverso l’utilizzo del ROV nei target individuati.
Finalizzazione del software

Dopo l’implementazione, in questa fase, si procederà all’ottimizzazione dell’intero sistema sia per quanto riguarda le componenti software che quelle hardware. E’ prevista anche la revisione e il miglioramento del software nei casi in cui questo presenti delle anomalie (debug).

Complessivamente il sistema consentirà di elaborare il dato proveniente dallo strumento di rilievo per aumentare le capacità di analisi e di interpretazione del personale addetto alle varie fasi.

Più precisamente saranno disponibili funzionalità per:
- interpretare i dati raccolti raccolte durante la fase di indagine;
- associare e confrontare i dati raccolti con quelli contenuti nel datawarehouse del sistema;
- misurare la coerenza dei dati raccolti con quelli associati ai ritrovamenti avvenuti in precedenza nell’area di indagine;
- stimare le probabilità che i dati raccolti siano effettivamente di una certa importanza per il progetto;
- inserire i dati raccolti nel datawarehouse per incrementare il livello di “conoscenza” del sistema e quindi far “apprendere” il sistema.

- **Tipo attività: SP**

A.1.5 – Sviluppo di tecniche per il rilievo 3D sottomarino

- **Descrizione**

Le tecnologie del Reverse Engineering sono ampiamente utilizzate in archeologia per ricostruire i modelli digitali di reperti e siti di interesse storico archeologico. Tuttavia queste tecnologie non sono mai state impiegate per l’archeologia sottomarina dove sarebbe molto importante poter disporre dei modelli 3D dei reperti che, per varie ragioni, non vengono recuperati. Scopo di questa attività è di giungere alla definizione delle tecniche più adatte per il rilievo 3D sottomarino. L’attività di ricerca avrà per oggetto lo studio dell’effetto delle particelle sospese nell’acqua e quindi della torbidità sulle prestazioni di alcune delle tecnologie impiegate per il Reverse Engineering quali la tecnologia laser e quella ottica a luce strutturata. A tal proposito si farà riferimento all’ampia bibliografia disponibile sull’“underwater imaging” ed alle numerose ricerche svolte dal National Maritime Research Institute Giapponese nel campo della scansione laser dei fondali sottomarini.
Si prevede di fare delle sperimentazioni in vasca ove si simuleroanno diversi valori di
torbidità dell’acqua facendo variare in maniera opportuna la quantità di particelle in
sospensione. Si effettueranno diverse scansioni su oggetti di geometria nota
utilizzando diversi valori della torbidità. Confrontando i risultati delle scansioni con
la forma geometrica esatta degli oggetti si potrà misurare l’errore e si potranno
definire ed ottimizzare i parametri di funzionamento per migliorare la precisione.
Tale studio definirà le tecnologie più adatte allo sviluppo di uno scanner 3D
subacqueo che sarà progettato in due moduli: uno contenente i dispositivi ottici e
l’altro con le batterie e l’hardware di controllo. I due moduli potranno essere
interconnessi o lasciati indipendenti a seconda delle esigenze. Il sistema sarà poi
dotato di apposite impugnature che consentiranno ai sommozzatori di movimentarlo
e controllarlo.
Le specifiche definitive del prototipo saranno definite in accordo alle indicazioni
della Cooperativa Nautilus che, avendo a disposizione una mappatura dei siti e dei
relitti archeologici sommersi, potrà fornire i dati necessari in termini di profondità
minime, media e massima a cui lo scanner dovrà essere in grado di lavorare.
Definite le specifiche, sarà necessario effettuare una progettazione di massima delle
casse a tenuta stagna che dovranno contenere i due moduli del sistema. Si applicherà
il metodo della progettazione virtuale che, impiegando diversi codici di simulazione
numerica, permette di ridurre il costo e la durata della fase di prototipazione fisica. In
particolare, dopo una necessaria progettazione al CAD si procederà utilizzando le
tecniche di analisi agli elementi finiti per ottenere un dimensionamento delle casse a
tenuta stagna che minimizzi peso e ingombri pur rispettando i vincoli di sicurezza e
le specifiche sulla profondità operativa e quindi sulla pressione di esercizio.

- **Tipo attività:** RI

A.1.6 – Sviluppo di un prototipo dimostrativo di uno scanner 3D subacqueo

- **Descrizione**

Come si è visto, nell’attività A.1.5 si definiscono le specifiche e le tecnologie più
adatte al rilievo 3D di geometrie in ambiente sottomarino ed si progetta il prototipo
di scanner 3D subacqueo. In questa attività, quindi, si utilizzeranno i risultati della
precedente per la produzione di un prototipo dimostrativo dello scanner 3D
subacqueo.
Per ridurre i tempi e i costi di sviluppo del prototipo si utilizzerà come base uno
scanner 3D presente in commercio che sarà scelto sulla base delle specifiche e dei
risultati prodotti dallo studio condotto nell’attività A.1.5.
Sulla base dello scanner commerciale prescelto si procederà ad una progettazione di
dettaglio del prototipo applicando le opportune metodologie di disegno assistito dal
calcolatore e di simulazione numerica agli elementi finiti.
Il prototipo sarà quindi testato in vasca per verificare la rispondenza ai requisiti progettuali.
Lo scanner dovrà riuscire a mantenere una precisione accettabile anche in condizioni di acqua torbida e alle profondità di esercizio necessarie. La precisione che si vuole ottenere deve essere quindi dell’ordine di 1-5 mm per scansioni effettuate a circa 1 metro di distanza in condizioni di acqua mediamente torbida ad una profondità di circa 40-50 metri.
L’alimentazione a batterie deve permettere di effettuare almeno 20 scansioni.
Il peso e l’ingombro del sistema dovrebbero essere i più ridotti possibile e comunque non si dovrebbero superare i 35 Kg.

- **Tipo attività: SP**

A.1.7 – Definizione e sviluppo di protocolli di comunicazione/trasmissione dati real time

- **Descrizione**

Questa attività è rivolta principalmente alla progettazione ed allo sviluppo di protocolli di comunicazione per interfacciare la fase di acquisizione sul campo con la cabina di regia che segue le campagna di acquisizione durante la fase live così come descritto e realizzato nell’OR4. Tali protocolli saranno anche orientati a ricevere comandi o suggerimenti operativi per condurre analisi supplementari nella fase di individuazione dei reperti sommersi.
Costruire questo link on-line con la cabina di regia permetterà di ridurre i tempi di analisi del dato acquisito dagli strumenti e permetterà inoltre di fornire in modalità real-time le informazioni di supporto alla decisione sul tipo di intervento da intraprendere e fornendo quindi uno strumento evoluto per la definizione della metodologia innovativa del progetto MESSIAH.
La tipologia dei dati che saranno gestiti attraverso questo protocollo sarà:
 - dati scientifici degli strumenti;
 - immagini e video live;
 - modelli geo-referenziati;
 - dati multimediali eterogenei;
Per le tipologie di dati che richiedono un’ampiezza di banda significativa come i video saranno studiati degli algoritmi di compressione che ne consentano l’utilizzazione real-time ed inoltre per la loro correlazione con i modelli virtuali e le simulazioni saranno predisposti degli encoding temporali di sincronizzazione.

- **Tipo attività: RI**
2.2.1.d) Risultati per attività e partner coinvolti

<table>
<thead>
<tr>
<th>Attività</th>
<th>OR</th>
<th>1</th>
<th>Risultati</th>
<th>Responsabile</th>
<th>Partner Coinvolti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Report</td>
<td>Nautilus</td>
<td>Unical/Unirc/CM Sistemi Sud/Infobyte/Intersiel/Demetra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Banca Dati</td>
<td>Nautilus</td>
<td>Unical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Report</td>
<td>Demetra</td>
<td>UniRC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Banca dati</td>
<td>Demetra</td>
<td>UniRC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Report progettazione</td>
<td>Nautilus</td>
<td>CM Sistemi Sud/Intersiel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prototipo sw</td>
<td>Nautilus</td>
<td>CM Sistemi Sud/Intersiel/Demetra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Banca Dati</td>
<td>Nautilus</td>
<td>CM Sistemi Sud/Intersiel/Demetra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Report tecnologie Progetto Prototipo</td>
<td>Unical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prototipo sperimentazione</td>
<td>Unical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Report Prototipo Sistema sw</td>
<td>Infobyte</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 3 – Risultati, responsabili e partner OR1

2.2.1.e) Input dell’OR1

− Base cartografica regionale;
− Dati del censimento del “Progetto Archeolmar, censimento dei beni archeologici sommersi nelle regioni Campania, Basilicata, Calabria, Puglia, per conto del Ministero dei Beni e delle Attività Culturali. Il progetto ha consentito di individuare, posizionare, descrivere e documentare circa 200 siti archeologici sommersi, dei quali oltre il 50% inedito. Oltre 90 dei 200 siti sono distribuiti in Calabria;
− Dati del censimento sulle cave da parte di Demetra
− Banca dati rilievi geofisici Cooperativa Nautilus;
− Banca dati rilievi geofisici Demetra

2.2.1.f) Output dell’OR1

− software per il supporto all’interpretazione delle anomalie rilevate dal Side Scan Sonar;
− sistema integrato di software per la gestione e l’organizzazione dei dati di campo subito dopo l’effettuazione dei rilievi;
− Report con la definizione delle metodologie e procedure più idonee all’individuazione delle cave
C I

- Report con la definizione delle metodologie e procedure più idonee all’individuazione dei beni archeologici sommersi;
- banca dati dei rilievi effettuati;
- Report descrittivo degli studi sulle tecnologie del Reverse Engineering per il rilievo subacqueo;
- Progetto del prototipo dello scanner 3D subacqueo;
- Prototipo dello scanner 3D subacqueo;
- Report descrittivo dell’attività sperimentale dello scanner 3D subacqueo;
- report con i risultati e le performance del prototipo scanner 3D subacqueo in termini di precisione geometrica, resistenza alla pressione, durata delle batterie.

2.2.1 g) Collegamenti tra l’OR1 e gli altri OR del progetto

L’OR1 acquisirà dati sotto forma di input dall’OR2 e rilaserà dati sotto forma di output all’OR4.

2.2.1.h) Riferimenti bibliografici dell’OR1

- Philippe Blondel and Bramley J. Murton, Handbook of seafloor sonar imagery – (Wiley 1997)
- Charles Mazel, Side Scan Sonar Record interpretation – (Klein Associates, inc 1985)
- Edoardo Spirandelli, La strumentazione per i ROV – (Tecnologie Trasporti Mare luglio 2000 - pp. 5-6)
- Jean-Yves Blot, Underwater Archaeology: Exploring the world beneath the sea (Thames & Hudson/Abrams 1996)
- Woodbourne M.W., Sediment distribution and the correlation between lithofacies and associated seismic reflection signature in Table Bay. (MS. Dept of Geology. University of Cape Town 1982.).
- Chih-Ho Yu; Chuanjun Wang; Shape from underwater image shading, Proceedings of OCEANS '94. 'Oceans Engineering for Today’s Technology and Tomorrow’s Preservation.' Volume 1, 13-16 Sept. 1994 Page(s):I/181 - I/186.
2.2.2) **OR2: Studio e definizione di modelli innovativi per la progettazione e la pianificazione di interventi nel settore dell'archeologia sommersa**

2.2.2.a) Descrizione dell’OR2

L’OR2 ha come obiettivo di ricerca industriale quello di eseguire l’analisi e la definizione di modelli di lettura critica di ambienti storici, attraverso la combinazione strutturata di fonti diverse di dati eterogenei per favorire interpretazioni multilivello, per il supporto alle decisioni e per la pianificazione degli interventi sul sito.

La ricognizione e la prospezione, finalizzate alla localizzazione e protezione dei reperti archeologici presenti in ambienti subacquei, e la realizzazione di una mappa digitale archeologica interattiva del territorio in analisi che possa accrescere in termini di conoscenza nel tempo ed estendersi all’intero Mediterraneo o seguire le rotte più significative in base ai differenti periodi storici che hanno caratterizzato la storia della marineria, rappresentano a nostro avviso una priorità emergente per chi vuole tutelare e salvaguardare il patrimonio culturale presente nei fondali marini.

In particolare riteniamo che le conoscenze storico artistiche, le innovazioni tecnologiche nel campo dell’acquisizione dei dati con scanner e apparati di analisi microchimica, siano gli elementi principali da correlare e da inserire all’interno di una mappa dinamica digitale che costituisca l’elemento primario di sintesi dei dati ai fini di aumentare la conoscenza della collettività scientifica e di supportare al meglio chi deve vigilare e controllare la conservazione del patrimonio culturale (sovrintendenze, istituti centrali, capitanerie di porto, forze dell’ordine, istituzioni del territorio, ..).

Vista la complessità dei dati e delle informazioni che agiscono nel contesto del sommerso e la complessità delle procedure di intervento che oggi sono praticate, riteniamo che uno dei punti di sintesi da sviluppare sia quello di un sistema di simulazione che sia capace di attingere alle banche dati esistenti tramite l’OR5 e di supportare il processo di pianificazione e di decisione per chi è predisposto ad intervenire nell’OR4 e OR1.

La seguente figura mostra uno schema logico di come interagiscono fra loro le diverse attività dell’OR2:
Si riporta di seguito una tabella riepilogativa delle attività previste nell’ambito dell’OR2.

<table>
<thead>
<tr>
<th>Attività</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.1</td>
<td>Modello di specifica dei requisiti di tutela dei beni e metodi di raccordo delle tecniche di rappresentazione</td>
</tr>
<tr>
<td>A2.2</td>
<td>Ricerca e definizione di strumenti innovativi per la pianificazione e la progettazione degli interventi, integrati a strumenti di lavoro cooperativo e knowledge-based</td>
</tr>
<tr>
<td>A2.3</td>
<td>Sviluppo SW per la gestione e l’accesso alle differenti tipologie di dati eterogenei a valore aggiunto accessibili attraverso il meta-database. Sviluppo di tutte le procedure di interfaccia per la ricerca, la manipolazione e la presentazione di tali dati in un nuova modalità di rappresentazione correlata ed integrata</td>
</tr>
<tr>
<td>A2.4</td>
<td>Realizzazione del sistema di visualizzazione integrato per la rappresentazione dei dati di configurazione, previsione e di suggerimento alle decisioni ad uso della centro di regia che sarà sviluppato nell’OR4. (Sala controllo e regia)</td>
</tr>
</tbody>
</table>

Tabella 4 – Elenco attività OR2

2.2.2.b) Stato dell’arte dell’OR2

Ad oggi le tecnologie esistenti nel monitoraggio di siti archeologici, focalizzano la propria attenzione sulla necessità di consentire ad operatori residenti in sito di intervenire in caso di eventi. Questo approccio, pur se pienamente giustificato dalla necessità di interventi rapidi e puntuali, soffre tuttavia di un limite fondamentale. Tale limite è rappresentato dall’impossibilità, per ovvie ragioni economiche, di avere direttamente in sito la disponibilità di personale altamente qualificato in tutti i vari settori che sono interessati alla conservazione delle strutture e dell’ecosistema stesso in cui le strutture sono inserite.

Inoltre e purtroppo, le spiagge e i litorali sono stati massacrati dagli interventi umani con insediamenti edilizi sulle coste. Ogni intervento modifica le correnti e il moto ondoso, sconvolgendo la situazione dei siti archeologici. Sono quindi necessari, a fronte del verificarsi di questi interventi, sistemi che consentano di seguire tali evoluzioni e l’impatto generato sui siti stessi.

Il monitoraggio dei siti - e la possibilità di sovrapporre a questi diverse cartografie tematiche - consentono di conoscere rapidamente l’impatto archeologico di ogni tipo di attività in ambito marino. Con questo strumento l’obiettivo di rendere la tutela archeologica elemento di programmazione dello sviluppo del territorio stesso appare più facilmente perseguibile.

Emerge un quadro di assenza di strumenti specifici di supporto alla comunità scientifica ed agli addetti ai lavori utile alla pianificazione e progettazione di un intervento in un sito archeologico sia in fase preventiva che in fase operativa che supporti l’iter delle operazioni e che renda esplicita la congruità tra il preventivo ed il reale andamento delle cose. <
In termini di tecnologie cooperative in rete oggi vi sono molte soluzioni ed applicazioni anche industriali soprattutto a livello di imprese virtuali e di mockup industriale. Ma non esistono prodotti che si possono applicare al contesto dell’archeologia sottomarina ed alla complessità delle tematiche che da essa sorgono in termini di natura dei dati da condividere e di responsabilità specifiche sulle decisioni da prendere.

Agenti intelligenti e Realtà Virtuale

Attualmente, la tecnologia legata agli agenti intelligenti, detiene il focus d’interesse in molti settori della *computer science* e dell’intelligenza artificiale e costituisce il nuovo paradigma per lo sviluppo di applicazioni software. Innanzitutto bisogna evidenziare il fatto che non esiste una definizione univoca di agente intelligente, ma si può puntare a dire cosa è un agente intelligente, e cosa invece non è. Nelle differenti aree, che costituiscono l’ICT, e più precisamente nell’area relativa all’intelligenza artificiale, alla gestione della rete, robotica ed altri settori, la parola agente assume significati e definizioni differenti, e pertanto gli agenti non vengono utilizzati per gli stessi scopi. In ogni caso, essi, seppur appartenendo a settori differenti, possiedono delle caratteristiche di base comuni.

Attualmente, gli agenti intelligenti focalizzano un intenso interesse sulle diverse sub aree dell’ICT e dell’Intelligenza Artificiale. Essi sono usati in un continuo, e crescente numero di varietà di applicazioni, partendo da piccoli sistemi atti a filtrare e-mail per finire verso grandi e complessi sistemi di elevata criticità, quali il controllo del traffico aereo che in termini di complessità è equiparabile al caso dell’archeologia subacquea visto l’alto numero di variabili e di intervenenti autonomi che agiscono.

Le tecnologie orientate agli *Intelligent Virtual Agents* (*IVAs*), rappresentano un’area emergente e multidisciplinare in rapida crescita, in quanto accattiva l’interesse di altri settori quali la formazione, l’intrattenimento, la comunicazione, la fruizione e la valorizzazione dei Beni Culturali ed il Game Industry.

Dati gli obiettivi di integrazione dei *Virtual Humans* (*VH*), che inglobano gli agenti intelligenti, all’interno dei Ves, gli studi in materia tendono a puntare verso un Intelligent Virtual Agents che percepisce un object/agent, rendendolo cosciente di percezioni. Si parla in questo caso di *Intelligent Virtual Reality System* (*IVRS*). Con tale termine si identifica un sistema che punta ad un’integrazione della tecnologia AI, all’interno di un ambiente virtuale, costituendo uno specifico campo di applicazione. La ricerca punta verso la dotazione degli IVAs, di meccanismi percettivi che gli permettono di essere “realisticamente informati” del contesto che li circonda. Pertanto, in diversi ambienti scientifici, lo sforzo è diretto a ridurre la differenza tra la percezione dell’TVA e la
percezione umana. L’obiettivo è quello di rendere più realistico il matching tra la vita reale e quella all’interno di un ambiente virtuale.
Oggi, gli ambienti virtuali, sono caratterizzati dalla presenza di umanoidi (*Virtual Humans – VH*) che includono agenti virtuali (*Virtual Agents – VA*), con diversi gradi di intelligenza, ottenendo quello che viene definito *Intelligent Virtual Agents (IVAs)*. Un IVA è un agente autonomo, all’interno di un ambiente grafico interattivo, o Ambiente Virtuale (*Virtual Environments - VE*) tipicamente di natura 3D, il quale dotandosi della tecnologia dell’AI e dell’*Artificial Life (Alife)*, consente un’interazione diretta tra l’IVA ed il relativo ambiente, e/o con gli utenti. Un IVA, potrebbe evolvere nel suo ambiente, oppure potrebbe interagire con esso o con altri IVAs.

2.2.2.c) Attività dell’OR2

A.2.1 – Modello di specifica dei requisiti di tutela dei beni e Metodi di raccordo delle tecniche di rappresentazione

- **Descrizione**

La presente attività si compone di due sottoattività specifiche:

A.2.1.1: Modello di specifica dei requisiti di tutela dei beni ai fini di renderli utilizzabili in termini di pianificazione e previsione

L’attività ha lo scopo di definire un formalismo per la specifica dei requisiti di tutela in grado di: - caratterizzare le soglie di degrado e il livello di intervento sui beni al raggiungimento delle soglie stesse; - definire i metodi di misurazione da applicare per il monitoraggio degli stessi; - definire il protocollo di intervento per i diversi livelli di intervento.

Tale formalismo, coerente con i metodi e le tecniche sviluppate nell’obiettivo realizzativo, sarà utilizzato nell’applicazione CAD del sistema di catalogo integrato (OR5) allo scopo di permettere il confronto tra i percorsi di valorizzazione del patrimonio con i programmi di monitoraggio e intervento sul patrimonio stesso, in una logica di valutazione dei costi rispetto ai benefici.

Il formalismo da individuare dovrà essere progettato e integrato come estensione delle categorie dell’ontologia prevista nell’OR.5; in particolare l’attività sarà caratterizzata dalle seguenti componenti:

- una componente ontologica specifica le cui categorie specializzano alcune proprietà del bene, ed in particolare tutto quanto può riguardare la rappresentazione delle soglie di degrado, le modalità di intervento al raggiungimento delle soglie, le misurazioni necessarie per il monitoraggio;

- una componente applicativa di specifica dei requisiti di tutela, che consente di esprimere una porzione del patrimonio in termini di valori soglia di degrado e metodi di misurazione;
CULTURA E INNOVAZIONE S.C.a R.L.

- una componente di traduzione da un più alto livello di astrazione del formalismo individuato alla sua rappresentazione ontologica corrispondente;
- una componente di analisi economica, che caratterizza l’intervento sotto il profilo economico, permettendo di prevedere l’impatto delle iniziative di recupero in relazione al rapporto costi/benefici.

Il tutto è inquadrato all’interno di un sistema che consente a specialisti di valutare da remoto le informazioni derivanti dall’attività di monitoraggio, e di delineare gli eventuali interventi del personale in sito, attraverso l’applicazione di modelli di simulazione in funzione dei parametri rilevati.

Inoltre l’attività di tale laboratorio, presso il quale sarà mantenuto il presidio delle specifiche tecnologie applicate, sarà utilizzato, in un’ottica di servizio, per lo sviluppo di nuove opportunità quali:
- fruizione diffusa da parte di strutture preposte a compiere attività di monitoraggio e tutela;
- creazione di percorsi di interesse turistico utilizzando anche l’osservazione dei fondali marini interessati attraverso il web.

Una volta individuato il numero dei modelli e delle applicazioni da sviluppare, si andrà a definire:
- la tipologia e la modalità di fruizione delle informazioni da trattare;
- le caratteristiche dei sistemi informativi che si andranno a realizzare;
- l’interfaccia utente comune da sviluppare ed utilizzare per rendere fruibili le informazioni trattate.

Successivamente si realizzerà il modello prototipale del laboratorio tematico per la tutela dei siti archeologici subacquei attraverso l’acquisizione dei beni strumentali previsti e la realizzazione ed applicazione delle tecniche di simulazione che consentano ad un sistema esperto di seguire le evoluzioni dei siti.

A.2.1.2: Metodi di raccordo delle tecniche di rappresentazione
L’attività ha lo scopo di progettare metodi di raccordo tra le tecniche di rappresentazione sviluppate nell’obiettivo realizzativo e il modello di rappresentazione della conoscenza ontologica oggetto dell’ OR5.

Tali metodi dovranno definire primitive di manipolazione virtuali degli oggetti dell’ontologia che corrispondono ai reperti censiti, possano essere specializzate nelle loro controparti concrete che permettono il controllo e la manipolazione delle rappresentazioni visuali dei reperti, secondo le tecniche sviluppate sviluppate nell’obiettivo realizzativo.

Si tratta sostanzialmente di un sistema di arricchimento dello spazio ontologico previsto nell’OR 5 con le risorse multimediali oggetto di realizzazione dell’OR 2
(riproduzioni virtuali, simulazioni visive e auditive, ambienti immersivi in grafica 3D, etc …).

Tale attività deve consentire l’uso coerente e integrato di risorse multimediali nell’ontologia.

L’ipotesi di lavoro è che tutte le risorse che rappresentano un oggetto, ognuna dal punto di vista di un media, debbano essere associate al corrispondente concetto dell’ontologia attraverso la loro collocazione (concatenazione) su un sistema di riferimento stabilito per quel concetto in modo tale che le operazioni di fruizione delle risorse possano essere definite solo sul sistema di riferimento ed effettuate mediante le risorse in modo guidato dalla relazione risorsa-sistema di riferimento.

La figura di sopra mostra un esempio di scenario di arricchimento dell’ontologia.

E’illustrata una classe del livello intensionale in corrispondenza della quale sono stabilite le modalità di definizione del sistema di riferimento da associare ad ogni oggetto di quella classe (ad esempio: se tali sistemi debbano includere dimensioni spaziali, temporali o altro); un oggetto A della stessa classe è associato ad un sistema

Figura 5 - Arricchimento dell’ontologia con risorse multimediali
di riferimento formulato con tali modalità. Inoltre, nella figura è illustrato un ulteriore oggetto B (la cui classe di appartenenza non è illustrata in figura). Un certo numero di risorse multimediali sono collocate (concatenate) in tale sistema il quale è sua volta concatenato al sistema di A in corrispondenza di una relazione di contenimento stabilita a livello ontologico.

- **Tipo attività:** RI

A.2.2 – Ricerca e definizione di modelli innovativi per la pianificazione e la progettazione degli interventi, integrati a strumenti di lavoro cooperativo e knowledge-based

- **Descrizione**

Vista la complessità dei dati e delle informazioni che agiscono nel contesto del sommerso e la complessità delle procedure di intervento che oggi sono praticate, riteniamo che uno dei punti di sintesi da sviluppare sia quello di un sistema SW di simulazione che sia capace di attingere alle banche dati esistenti e di supportare il processo di pianificazione e di decisione per chi è predisposto ad intervenire. E’ difatto l’assenza di strumenti informatici e di supporto a livello nazionale ed internazionale mirati al settore dell’archeologia subacquea che motiva la scelta di creare un sistema SW di cooperating work basato su tecniche di simulazione e di visualizzazione dei dati con l’uso della realtà virtuale, strumento che riteniamo indispensabile a chiunque debba agire sul territorio nel rispetto delle normative vigenti, delle condizioni operative del sito e dell’importanza del rilievo effettuato e soprattutto al fine di accelerare l’iter decisionale in un contesto dove è molto difficile garantire la salvaguardia del patrimonio culturale sommerso dal saccheggio e dal danneggiamento di clandestini e dall’azione distruttiva degli agenti naturali.

In sintesi lo strumento SW che intendiamo studiare e progettare mira a creare le sinergie ed ad integrare le competenze tecniche multidisciplinari al fine di supportare al meglio il processo di ricognizione, prospezione, rinvenimento, studio storico, recupero, rilevamento, catalogazione, messa in sicurezza, occultamento o recupero, messa in controllo vigilato, tutela e valorizzazione dei beni culturali sommersi.

Le motivazioni principali per cui è necessario oggi investire nella ricerca di nuove tecnologie a supporto dell’archeologia sottomarina o più generalmente archeologia delle acque sono molteplici. Va detto che da sempre, in Italia si è manifestato scarso interesse per questo settore sia dalle Università che dai vari Ministeri preposti alla conservazione dei beni culturali, con il risultato che non si è riconosciuta una disciplina autonoma nel settore del sommerso a differenza di altri paesi. Il risultato macroscopico è stato tangibile in termini di investimenti da parte di quei soggetti che, pur avendo competenze tecniche d’avanguardia, hanno preferito deviare l’attenzione verso altre aree e/o mercati non percependo la potenzialità di investire e di divenire
trainanti e competitivi su questo settore principalmente nell’area Mediterraneo e trasformando la sinergia e la competenza in una filiera di eccellenza capace di rispondere alle richieste di ricerca e di servizio provenienti anche da altri paesi. Alla base dell’attività A.2.2 vi è lo studio, la definizione e la realizzazione di metodi e tecnologie prototipali per la pianificazione, gestione, controllo ed esecuzione degli interventi in sito. I problemi indirizzati riguardano la scelta e configurazione degli scenari di intervento, la simulazione delle tecniche operative e la previsione dei tempi di svolgimento in relazione alle condizioni meteo, alla conformazione dei fondali, alle caratteristiche dei reperti, gli strumenti di supporto operativo per i rilievi e gli interventi in situ; la specifica dei protocolli per l’eventuale prelievo ed, infine, il “prelievo virtuale” per l’espressione a terra del campo archeologico.
Tali tecnologie troveranno, nel presente OR spazi per:
- la creazione e definizione di una mappa interattiva digitale;
- l’individuazione di aree di interesse archeologico in base alla correlazione con i sistemi e le banche dati esistenti delle rotte storiche e delle morfologie marine;
- la progettazione e la pianificazione di campagne di rilevamento e di osservazione dei siti ritenuti di interesse;
- la definizione dei piani di intervento e la progettazione dei rilievi in caso di reperimenti occasionali e non programmati con la correlazione in tempo reale dei dati storici ed informativi del contesto in cui è situato il sito;
- la simulazione di scenari operativi e il confronto real-time con i dati di campagna per caratterizzare, in cabina di regia, la missione effettiva rispetto a quella programmata; questo al fine di rendere possibili decisioni operative con l’obiettivo di reperire nuovi dati utili o modificare il piano di intervento correggendo le ipotesi di missione preventive o adeguare le risorse durante le fasi operative con il supporto di dati di quick-look;
- la simulazione di scenari operativi per il training degli operatori coinvolti in tali interventi per la validazione delle procedure di sicurezza;
- la creazione di itinerari sommersi per parchi sottomarini in conformità alle vigenti leggi ed alle norme di messa in sicurezza;
- l’introduzione di parametri di valutazione e criticità durante le fasi operative di recupero di reperti di supporto alle decisioni;
- la correlazione fra dati derivanti da apparati di monitoraggio (immagini live, dati di scansione, immagini fotografiche) con oggetti ed ambienti 3d presenti nella banca dati storica-digitale al fine di studiare le ipotesi di reperto ancora sommerso la disposizione probabile dei reperti nel sito la loro datazione e l’eventuale necessità di intervenire in profondità per recupero di reperti di interesse scientifico o la decisione di mettere in sicurezza l’intero sito per evitare atti di asportazione o ruberie;
- la previsione del degrado in base agli agenti chimici e naturali in relazione alla posizione del sito ed alla sua vicinanza a luoghi a rischio da un punto di vista ambientale.
Il principale risultato dell’attività è un prodotto SW di configurazione e pianificazione di rilievi/tutela dei siti archeologici sottomarini.

Gli utenti del Prodotto SW di configurazione e pianificazione saranno in grado di ricostruire gli ambienti di intervento, di inserirvi strumenti sia di monitoraggio che operativi (sottomarini, bracci meccanici, ...), di simulare le interazioni fra strumenti ed ambiente; si prevede inoltre l’utilizzo distribuito ed in multiutenza dello scenario simulato tramite collegamenti in network (LAN e/o WEB) ed un approccio di tipo cooperativo/concorrenziale per quanto riguarda l’interazione dei partecipanti alla simulazione. Infine l’architettura del sistema autore dovrà permettere l’integrabilità di eventuali futuri apparati tecnologici e/o device di interazione.

Nell’ambito della presente attività sono previste le seguenti sotto-attività:

A.2.2.1: Creazione di una meta-base dati per la correlazione delle informazioni a disposizione della Comunità scientifica (Università, Centri di Ricerca, Fondazioni o Privati), delle Istituzioni competenti (Sovrintendenze, Istituti Ministeriali, Istituti Territoriali, Capitanerie di Porto, Carabinieri e Guardia di Finanza, ...) con i dati storici marinari ed i dati sensoristici e legislativi.

Tale attività produce uno schema concettuale esteso ad uso del sistema di pianificazione e gestione definendo un nuovo modello di dati ad uso delle necessità dell’ambiente virtuale di simulazione e pianificazione predisponendo il sistema ad uno sfruttamento in tempo reale di tale base di conoscenza riducendo quindi gli accessi a banche dati remote meno dinamiche per questa metodologia di utilizzo. Questa attività costituisce l’interfaccia operativa verso l’OR2.1.

A.2.2.2: Sviluppo SW per la gestione e l’accesso alle differenti tipologie di dati eterogenei a valore aggiunto accessibili attraverso il meta-database. Sviluppo di tutte le procedure di interfaccia per la ricerca, la manipolazione e la presentazione di tali dati in un nuova modalità di rappresentazione correlata ed integrata.

Tale prodotto SW fornisce le procedure 3D di interazione su scenari tridimensionali del sito correlati con le informazioni disponibili per filtrare tutte le operazioni di pianificazione e selezione ad un utente decisorio non informaticamente esperto. Sarà fatto ampio uso di tecniche derivanti dalla realtà virtuale (simulazioni visive, auditive, tattili, interfacce multimodalì di interazione real-time, ambienti immersivi in grafica 3d, visualizzazioni stereoscopiche, ...) già da tempo utilizzate per il training, la pianificazione ed il controllo di operazioni complesse; si noti che molti sono i settori di applicazione di tali metodologie (aeronautico, militare, medico-chirurgico, scientifico, ...) ed i risultati garantiscono alti livelli di affidabilità, sicurezza ed efficienza non riscontrabili applicando altre metodiche.

• **Tipo attività: RI**
A.2.3 – Sviluppo SW per la gestione e l’accesso alle differenti tipologie di dati eterogenei a valore aggiunto accessibili attraverso il meta-database. Sviluppo di tutte le procedure di interfaccia per la ricerca, la manipolazione e la presentazione di tali dati in un nuova modalità di rappresentazione correlata ed integrata

- *Descrizione*

Definizione, sviluppo ed integrazione delle procedure SW che alimentino la base di conoscenza previsionale e decisionale.

In questa attività si cercherà di realizzare un sistema SW evolutivo che possa integrare risultati provenienti da altri sistemi (previsione del degrado dei beni e dei manufatti per azioni di agenti naturali in situ, analisi costi e benefici di interventi dei recupero o di messa in sicurezza del bene rilevato, simulazione di piani di monitoraggio e di intervento con tecniche virtuali immersive) ed accrescere l’esperienza con nuovi dati di riferimento teorici o sperimentali. Particolare attenzione dovrà quindi essere posta nella progettazione architetture del sistema esperto di conoscenza che gestire ed sviluppare nuovi modelli logici di analisi e sintesi previsionale. Il risultato atteso da questa attività è quindi un aggiornamento della base dati con le informazioni a valore aggiunto derivanti dalle simulazioni effettuate e disponibili per essere visualizzati in tempo reale dal sistema di visualizzazione.

E’ inoltre obiettivo di questa attività una definizione ed uno sviluppo di procedure che utilizzino algoritmi basati su Agenti Intelligenti per offrire un contributo di simulazione e pianificazione capace di storicizzare la conoscenza e supportare in maniera più evoluta le decisioni operative.

Alle tecniche di Agenti Intelligenti si potranno abbinare degli oggetti virtuali (umanoidi oppure altro…) che intervengono nello scenario di simulazione e pianificazione in maniera autonoma e reagiscono alle condizioni ambientali e di configurazioni provenienti dal sistema di Knowledge management con regole comportamentali che si specializzeranno col passare del tempo apprendendo.

A tal fine si contestualizzeranno ed utilizzeranno tecniche e metodologie note come “vita artificiale”, che comprende varie forme di sistemi adattivi nonché algoritmi di apprendimento / sviluppo/ evoluzione per tali sistemi. Ciò comprende:
- Progettazione e implementazione di varie tipologie di reti neurali artificiali
- Utilizzo dei più noti algoritmi di apprendimento per reti neurali, e loro adattamento al tipo di compito richiesto;
- Utilizzo di speciali algoritmi di adattamento noti come “algoritmi genetici”;
- Progettazione e implementazione di speciali tipologie di reti neurali note come “reti neurali ecologiche”, ossia sistemi in cui vengono implementate non solo le reti neurali ma anche gli ambienti con cui esse interagiscono
- Utilizzo dei più noti algoritmi di apprendimento per le reti neurali ecologiche, e loro adattamento al tipo di ambiente specifico delle applicazioni in cui vengono utilizzate;
- definizione ed implementazione delle regole comportamentali agli agenti intelligenti che intervengono nello scenario di pianificazione e loro rappresentazione all’interno di body virtuali o di dinamiche rappresentative dei singoli componenti rappresentati.

- **Tipo attività: RI**

A.2.4 – **Realizzazione del sistema di visualizzazione integrato per la rappresentazione dei dati di configurazione, previsione e di suggerimento alle decisioni ad uso della centro di regia che sarà sviluppato nell’OR4 (Sala controllo e regia)**

- **Descrizione**

A.2.2.4: Realizzazione del sistema di visualizzazione integrato per la rappresentazione dei dati di configurazione, previsione e di suggerimento alle decisioni ad uso della centro di regia che sarà sviluppato nell’OR4. (Sala controllo e regia).
Il carattere eterogeneo dei dati oggetto di trattamento ed i risultati ottenuti nelle precedenti attività di correlazione e simulazione sono presentati a una comunità cooperante di utenti (Cabina di Regia) al fine di aiutare la decisione operativa o stimolare nuove simulazioni ed approfondimenti modificando le ipotesi di intervento. Il prodotto finale di tale attività è un piano operativo completo di intervento sul sito di interesse.

- **Tipo attività: SP**

2.2.2.d) **Risultati per attività e partner coinvolti**

<table>
<thead>
<tr>
<th>OR</th>
<th>Attività</th>
<th>Risultati</th>
<th>Responsabile</th>
<th>Partner Coinvolti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.1</td>
<td>Report Modulo sw</td>
<td>Infobyte</td>
<td>CM Sistemi Sud/Infobyte</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>Prototipo sw di Pianificazione</td>
<td>CM Sistemi Sud</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>Prototipo SW di regole comportamentali</td>
<td>Infobyte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>Report Tecnico Ed SW di interscambio dati</td>
<td>Infobyte</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 5 – Risultati e responsabili OR2
2.2.2.e) Input dell’OR2
- Dati provenienti dalla identificazione dei beni dall’OR1;
- Dati elaborati dalla cabina di regia nell’OR4.

2.2.2.f) Output dell’OR2
- Modelli di interscambio e coerenti con lo schema relazionale delle banche dati MESSIAH;
- Modelli di certificazione scientifica per l’alimentazione dello schema integrato dell’OR5 coerenti con il formalismo ontologico;
- Modelli di validazione di comando e di progettazione per l’interscambio con l’OR4

2.2.2.g) Collegamenti tra l’OR2 e gli altri OR del progetto
- Motore informatico di supporto alla comunità degli intervenenti MESSIAH di ricerca e di previsione basato integrato a modello knoledged based;
- Prodotto SW di configurazione e pianificazione di rilievi/tutela dei siti archeologici sottomarini.

L’OR2 accede ai dati dell’OR5 tramite i deliverable dell’attività A.2.1 e riceve le informazioni per la pianificazione e per la previsione; riceve le indicazioni di decisioni dall’OR2.2 provenienti dall’OR4 e le storizza al fine di accrescere la conoscenza del sistema.

Produce la mappa digitale del sito in analisi correlata dei dati revisionali e dei dati relativi al piano di intervento in sito per renderla disponibile all’OR4.

Riceve tramite i deliverable dell’attività A.2.1 e A2.2.1 i dati di previsione e di pianificazione al fine di sintetizzarli visivamente; Riceve le sollecitazioni alle scelte da parte degli utenti decisori in maniera interattiva attraverso l’OR4.

2.2.2.h) Riferimenti bibliografici dell’OR2

2.2.3) OR3: Sistemi per il recupero, il rilievo e il trattamento conservativo in superficie

2.2.3.a) Descrizione dell’OR3

L’OR3 mira a definire sistemi tecnologicamente avanzati per la conservazione di reperti archeologici di natura lapidea (sia naturale che artificiale) di provenienza marina. La ricerca si articolerà in fasi successive, che ripercorrano in chiave sistematica e innovativa le operazioni che si succedono dal momento del ritrovamento di un reperto archeologico, in questo caso marino, alla sua musealizzazione. Si partirà quindi dagli aspetti analitici e diagnostici che permettono una adeguata documentazione del reperto, la sua collocazione in un preciso contesto storico e la determinazione del suo stato di degrado. Questo aspetto è sicuramente quello che è stato più studiato dai ricercatori, ma nell’ambito di questo progetto si ottimizzeranno le tecniche attualmente utilizzate, privilegiando i sistemi di diagnostica non distruttiva in modo da minimizzare il campionamento distruttivo sul reperto, e mettendo a punto delle apparecchiature specifiche quali uno scanner 3D miniaturizzato ad elevata accuratezza e portatile, per la rilevazione topografica di cavità in beni archeologici. Nell’ambito della fase caratterizzativa si dedicherà una particolare attenzione allo studio archeometrico delle ceramiche, vista la mole e l’accuratezza delle informazioni che si possono trarre da tale studio. Infatti, le regole dell’arte, legate alle scelte delle materie prime e delle tecniche di lavorazione, hanno il vantaggio di non poter prescindere dalle caratteristiche chimico-fisiche dei materiali, e sono quindi meno soggette a decisioni libere o dipendenti da altri fattori umani. Tenendo conto perciò in modo integrato dei dati tecnici, di quelli formali e di quelli della provenienza delle argille, è possibile, in un territorio ben studiato, confrontare tali dati per una classe stessa di manufatti, con i dati della stessa classe di reperti trovati in altre aree comunicanti con la prima. Procedendo si può arrivare a stabilire:

1) dove è iniziata la produzione del tipo studiato;
2) dove è stato esportato come prodotto finito;
3) dove sono state imitate forme e/o decorazioni con tecniche differenti;
4) dove infine sono stati importati vasai in grado di fare lo stesso tipo ceramico con materiali simili, ma distinguibili alle analisi.

Infine, l’incrocio dei dati archeometrici e stratigrafici, rilevati sia in siti subacquei che nelle zone di produzione in superficie, e la loro elaborazione statistica, possono mettere in luce una variabilità dei reperti, sia cronologica che di livelli produttivi ed organizzativi, che può a sua volta fornire un quadro d’insieme dell’evoluzione e della diffusione di una determinata cultura.

La seconda fase del progetto prevede l’analisi delle procedure per la conservazione del reperto, studiando i sistemi migliori per la sua pulitura e poi per il suo consolidamento/protezione. Queste operazioni (la pulitura e il consolidamento), sono spesso affrontate in maniera empirica dai restauratori, che, in assenza di metodi codificati
che definiscano le modalità da utilizzare nell’intervento e permettano il controllo del risultato ottenuto, si basano sulla loro esperienza e verificano a volte sperimentazioni dirette sulle opere stesse da preservare. Sia la pulitura sia la protezione/consolidamento richiedono inoltre spesso il ricorso a prodotti, formulati e tecnologie, le cui specifiche tecniche e prestazionali non sono adeguatamente illustrate. Infatti, il mercato dei prodotti e formulati per il restauro è piuttosto eterogeneo, e va dalle sostanze chimiche naturali usate tradizionalmente per il restauro, alle sostanze chimiche messe a punto usualmente per settori diversi dal restauro ma utilizzate anche per problemi conservativi.

Obiettivo del progetto sarà quindi quello di confrontare agenti di pulitura diversi, selezionandoli fra le molecole più innovative, con particolare riguardo per i principi attivi biocidi e antivegetativi (vista la provenienza specifica dei reperti) e studiando la loro interazione con i substrati lapidei.

Anche per quanto concerne i sistemi di protezione/consolidamento verranno studiati materiali polimerici appartenenti a diverse famiglie chimiche, ottimizzando le modalità del loro utilizzo ed eventualmente preparando formulati innovativi, mirati al trattamento dei reperti specifici presi in esame.

La terza fase del progetto consiste nella realizzazione di una camera termo/ultrasonica/chemio/barica (TUCHEB) per il restauro di Beni Culturali. Questa camera innovativa è un vero e proprio laboratorio automatizzato che permette di realizzare sia la pulitura che la protezione in condizioni assolutamente controllate (temperatura, umidità, ecc...) e con l’integrazione di accessori particolari (ultrasuoni, microonde, vuoto, ecc...). La progettazione di questa camera sarà finalizzata ad ottenere la massima versatilità, in modo da prevederne l’impiego su beni culturali di diversa natura (lapidei, lignei, cartacei, ecc....) ed in diverso stato di degrado. Nello specifico del presente progetto verrà testata sui reperti lapidei per rimuovere le patine di natura chimica e biologica cementatesi sulla superficie in seguito ai lunghi anni di giacenza marina e per realizzare poi l’impregnazione dei substrati con i protettivi/consolidanti selezionati nell’attività precedente. L’effettuazione di queste operazioni all’interno della camera dovrebbe permettere da un lato il ricorso a condizioni meno drastiche nella fase di pulitura, e quindi meno invasive nei confronti del substrato e d’altro canto l’ottenimento di un consolidamento più omogeneo e profondo.

L’ultima fase del progetto prevede lo studio delle condizioni ottimali per la musealizzazione dei reperti lapidei in modo che non si riinneschino meccanismi di degrado. A tal fine sarà necessario definire quali sono le principali condizioni di degrado, in base ai materiali in esame, controllare le condizioni microclimatiche dell’ambiente di conservazione (umidità, temperatura, componente UV, particellato disperso, ecc...) e sviluppare un progetto di intervento per correggere eventuali variazioni dei parametri in esame nell’ambiente indoor di conservazione dei reperti, riportandoli ai valori ottimali.

A tale proposito, oltre all’analisi del microclima degli ambienti espositivi verrà messa a punto un prototipo di teca espositiva per la conservazione di reperti di piccole dimensioni e di particolare sensibilità alle alterazioni chimiche e biologiche, quali manufatti in legno e ceramiche.
Si riporta di seguito una tabella riepilogativa delle attività previste nell’ambito dell'OR3.

<table>
<thead>
<tr>
<th>Attività</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3.1</td>
<td>Sviluppo di strumenti e tecniche per il rilievo e la caratterizzazione in superficie di reperti archeologici subacquei</td>
</tr>
<tr>
<td>A.3.2</td>
<td>Caratterizzazione con analisi non distruttive e distruttive di reperti archeologici subacquei</td>
</tr>
<tr>
<td>A.3.3</td>
<td>Tecniche avanzate di archeometria applicate ai reperti ceramici per analisi di provenienza</td>
</tr>
<tr>
<td>A.3.4</td>
<td>Nuovi sistemi per la pulitura e la protezione di reperti recuperati dall’ambiente subacqueo</td>
</tr>
<tr>
<td>A.3.5</td>
<td>Studio e realizzazione di un prototipo di camera termo/ultrasonica/che mio/barica (TUCHEB) per il restauro di beni culturali</td>
</tr>
<tr>
<td>A.3.6</td>
<td>Sistemi e tecnologie innovative per il controllo delle condizioni climatiche ambientali nei luoghi di conservazione dei beni.</td>
</tr>
<tr>
<td>A.3.7</td>
<td>Sistemi e tecnologie innovative per la realizzazione di un prototipo di teca finalizzata alla conservazione di materiali sensibili al microclima</td>
</tr>
<tr>
<td>A.3.8</td>
<td>Sviluppo di tecnologie innovative per la protezione sismica dei Beni Culturali</td>
</tr>
</tbody>
</table>

Tabella 6 – Elenco attività OR3

2.2.3.b) Stato dell’arte dell’OR3

L’attuale stato dell’arte delle conoscenze scientifiche al proposito è piuttosto carente, in quanto solo l’aspetto conoscitivo di questa tipologia di materiali è stato già approfondito, e codificato in norme UNI-Normal sulla caratterizzazione chimico-mineralogico-petrografico-morfologica dei materiali lapidei sia naturali, sia artificiali e sull’identificazione degli agenti biologici del degrado. In particolare negli ultimi anni molti studi sono stati realizzati nel campo dell’archeometria, che è l’interfaccia fra l’archeologia e le scienze chimico-fisiche e naturali. Moderne tecniche analitiche mediate dalla fisica, dalla chimica, dalla geologia, dalla biologia e dall’informatica vengono utilizzate per rispondere a domande poste da archeologi e curatori museali riguardanti il comportamento dell’uomo e i materiali utilizzati nell’antichità.

La documentazione dei reperti, fase importantissima per poter seguire in modo oggettivo le modificazioni subite dall’oggetto nei vari interventi di restauro, nonché l’eventuale formazione di nuove forme di degrado, interessa normalmente solo la superficie esterna del manufatto. E’ però vero che, spesso, le forme di degrado interessano in particolare le cavità e i punti più difficili da raggiungere (e quindi da trattare) del reperto. A tal fine verrà realizzato nel corso del progetto un micro-scanner 3D ad elevata accuratezza e portatile per la rilevazione topografica di cavità in beni archeologici.

L’indagine diagnostica prevista si compone anche delle principali tecniche di determinazione e caratterizzazione delle fasi di degrado, sia con tecniche distruttive che
non distruttive, quali fluorescenza ai raggi X, diffrattometria ai raggi X, sezioni stratigrafiche, indagini all’FT-IR, analisi cromatografiche per la determinazione dei sali solubili e porosimetriche.

In questa fase diventa importante anche la determinazione e l’analisi delle strutture dei materiali in esame attraverso tecniche non distruttive quali georadar e tomografia geoelettrica, che consentono di valutare lo stato di conservazione dei materiali, il loro stato di aggregazione e di predisporre corrette metodologie di intervento consolidante nelle fasi successive.

Molto diverso è lo stato dell’arte relativo alle fasi di pulitura e di protezione/consolidamento. Non esistono, infatti, metodologie codificate per valutare l’efficacia e l’invasività dei metodi di pulitura; tali metodi nel caso specifico di reperti di provenienza marina con patine molto particolarmente aggregate possono a volte essere eccessivamente aggressivi per i manufatti. Per quanto concerne poi l’efficacia delle tecniche di protezione adottate, esistono una serie di raccomandazioni UNI-Normal sulla valutazione dell’efficacia dei protettivi applicati su substrati lapidei, ma queste norme sono concepite sostanzialmente per manufatti architettonici e richiedono quasi sempre la preparazione di provini di laboratorio di dimensioni standardizzate, per cui non sempre è immediato il trasferimento di queste metodologie a substrati di forma e dimensione irregolare, quali sono i reperti archeologici. Del tutto carente risulta invece la normativa specifica sulle prestazioni di un consolidante, per cui bisogna far ricorso a metodologie messe a punto per campi applicativi diversi dal restauro.

Alla situazione lacunosa del campo normativo relativo alla valutazione dei risultati ottenuti nelle varie fasi dell’intervento conservativo, fa poi riscontro l’empirismo più totale nella scelta dei prodotti chimici da utilizzare in queste fasi. Il più delle volte il restauro viene effettuato con prodotti ormai obsoleti e non messi a punto per l’applicazione su reperti archeologici.

I manufatti di provenienza subacquea rappresentano inoltre un casus a se stante, con un’alta varietà di origini del potenziale degrado, legate soprattutto alle forme di alterazione di tipo chimico-fisico (alterazione delle strutture morfologiche, presenza di sali solubili, decoesione strutturale, alterazione cromatica ecc.) e di tipo biologico (attecchimento di organismi acquatici, presenza di micro e macroflora vegetale). Le tipologie di intervento per il recupero dell’opera devono tenere in considerazione queste condizioni di partenza, valutando con attenzione l’impatto dell’intervento sia sui materiali costitutivi sia sulle forme di alterazione macro e microscopiche.

Partendo da questo quadro delle conoscenze attuali, il progetto si pone come finalità di valutare le potenzialità di prodotti e tecnologie innovative da utilizzare sia nella fase conoscitiva sia nella fase conservativa del trattamento dei reperti provenienti dall’archeologia subacquea, selezionando dalla normativa (specifica del settore e più generale) le metodologie migliori per valutare i risultati ottenuti. In particolare per le fasi di pulitura e protezione/consolidamento verrà realizzata una camera Termo/Ultrasonica/Chemio/Barica (camera TUCHEB) in cui effettuare il trattamento di pulitura e
consolidamento di reperti archeologici in condizioni rigorosamente controllate e specifiche.

Considerando infine le particolari condizioni di provenienza dei reperti, è necessario mettere a punto una corretta progettazione di conservazione e tutela delle opere sottoposte a recupero restaurativo attraverso una pianificazione delle più idonee condizioni chimico-fisiche degli ambienti in cui i manufatti verranno esposti.

2.2.3.c) Attività dell’OR3

A.3.1 – Sviluppo di strumenti e tecniche per il rilievo e la caratterizzazione in superficie di reperti archeologici subacquei

Descrizione:

Questa attività prevede la documentazione del reperto sia dopo il suo rinvenimento, sia a seguito delle diverse fasi del trattamento conservativo. A tal fine verrà messo a punto un sistema di scanner 3D miniaturizzato, orientato ad ottenere modelli tridimensionali di manufatti con cavità difficilmente raggiungibili con tecniche tradizionali.

Il fascio laser di misura proveniente dal conoscopio, potrà anche utilizzare una sorgente laser senza specchi (mirror-less laser) la cui lunghezza d’onda emessa è selezionabile su tutto lo spettro visibile. I mirror-less laser sono realizzati utilizzando materiale liquido colesterico drogato con materiali organici fotoluminescenti. Il film sottile, eccitato da una sorgente laser di pomaggio vicino agli UV, emette una determinata lunghezza d’onda dipendente dalle proprietà della miscela utilizzata per realizzare il film stesso.

Il micro-scanner 3D potrà rilevare, grazie alle ridotte dimensioni totali del dispositivo, la topografia di cavità altrimenti inaccessibili di reperti archeologici, consentendo di riprodurre le caratteristiche geometriche dell’interno dell’oggetto.

Le dimensioni ridotte del micro-scanner realizzato permetteranno di rilevare con dettaglio cavità con diametro dell’ordine del centimetro e della lunghezza da 10 cm a 1 m, con una precisione sub millimetrica. La sorgente di luce basata su microlaser dovrà generare almeno 30 lunghezze d’onda comprese nell’intervallo 350-800 nano metri.
A.3.2 – Caratterizzazione con analisi non distruttive e distruttive di reperti archeologici subacquei

Descrizione:
La classificazione del reperto richiede inoltre una caratterizzazione della natura del materiale costituente il manufatto, tramite analisi chimiche e mineralogico-petrografiche, impiegando sia strumentazione tradizionale di laboratorio sia strumenti innovativi portatili e non distruttivi utilizzabili in campo (quali Fluorescenza a raggi X, georadar e tomografia geoelettrica).
Le analisi con la Fluorescenza portatile serviranno per avere una mappatura composizionale superficiale (con particolare riguardo per gli elementi in tracce, utili anche per definire le cave di origine dei materiali) e dello stato di degrado superficiale, mentre il georadar fornirà utili indicazioni sullo stato della struttura interna.
La caratterizzazione di laboratorio sarà effettuata solo su campionamenti significativi, ma sarà il più possibile esaustiva, in modo da poter definire, per ogni litotipo, la struttura, tessitura, i componenti mineralogici, la classificazione petrografica e la porosità. Lo studio verrà condotto mediante tecniche chimiche, ottiche, microscopiche e microanalitiche tramite SEM-EDAX e con tecniche diffrattometriche a raggi X.
Lo studio analitico non si limiterà al bulk del materiale, ma si andrà a investigare anche la natura dei prodotti di degrado presenti, con particolare riguardo alle alterazioni di natura biologica, studio indispensabile per selezionare i trattamenti migliori per la pulitura.
Per la realizzazione di questa attività verranno utilizzati i laboratori sperimentali Piani-diagnostici, finalizzati alla conservazione ed al restauro dei Beni Culturali, il cui rafforzamento è previsto nell’ambito del progetto.

A.3.3 – Tecniche avanzate di archeometria applicate ai reperti ceramici per analisi di provenienza

Descrizione:
Scopo dell’attività è quello di mettere a punto modelli e procedure in grado di svolgere approfondite analisi sui reperti marini, in particolare ceramiche, vetro antico e pietre lavorate, aventi come obiettivi:
− la caratterizzazione composizionale dei reperti;
− la conoscenza delle tecniche di lavorazione adottate.
Tali analisi sono volte a stabilire, con l'opportuna consulenza specialistica archeologica, le aree di provenienza delle materie prime e la collocazione dei reperti in un preciso ambito storico-geografico.

In particolare, per quanto riguarda la composizione dei reperti, l'obiettivo è svolgere analisi chimiche, fisiche e mineropetrografiche per la caratterizzazione delle fasi mineralogiche, per lo studio dei processi produttivi, per la determinazione quantitativa degli elementi maggiori ed in traccia nei materiali ceramici e nelle materie prime, per lo studio di caratterizzazione e di provenienza.

Inoltre, con riferimento alle tecnologie di fabbricazione, si vuole indagare, attraverso analisi chimico-fisiche, sui processi produttivi, sui sistemi di cottura utilizzati, sui cicli di cottura a cui i reperti sono stati sottoposti, sulle tecniche di formatura e modellazione, sulle caratteristiche delle cave di estrazione delle materie prime (prodotti ceramici e lapidei).

L'attività è tipicamente di Ricerca Industriale, ed in particolare verterà su una serie di analisi archeometriche che si possono così schematizzare:

- studio dei materiali di partenza: argille, inclusioni, pigmenti da fuoco, rivestimenti;
- studio per la determinazione della provenienza e della tecnologia di fabbricazione.

Operativamente, le analisi archeometriche saranno impostate secondo tre fasi di lavoro progressive:

a) una prima analisi degli impasti, da effettuare al microscopio binoculare, finalizzata alla creazione dei gruppi su cui fare riferimento durante la schedatura dei reperti. In questa fase sarà particolarmente importante il riconoscimento degli inclusi;

b) studio degli impasti in sezione sottile;

c) associazione dei dati così ottenuti, nei limiti del possibile, con la cartografia geologica esistente al fine di delineare le zone di produzione in un'ottica diacronica.

In particolare, gli impasti dovranno essere catalogati in base ad una descrizione macroscopica e mineropetrografica secondo uno schema le cui voci, con i relativi parametri di risposta, si possono così riassumere: Colore; Porosità; Durezza; Frattura; Inclusi; Frequenza degli inclusi; Assestamento degli inclusi; Dimensioni degli inclusi; Grado di arrotondamento degli inclusi; Tecnica di lavorazione; Atmosfera di cottura; Tipi morfologici; Analisi mineralogica; Origine proposta.

Le tecniche utilizzate per condurre le suddette analisi saranno prioritariamente quelle tipiche del laboratorio archeometrico specializzato per i materiali ceramici, ed in particolare:

- per l'analisi elementare del materiale ceramico: la spettrometria, la spettrofotometria, la diffrattometria, la microspettroscopia a infrarosso, la microscopia, la misurazione della microdurezza e della porosità;
- per lo studio della tecnologia di cottura (temperatura e atmosfera), in base all'analisi delle fasi mineralogiche: la diffrazione di raggi X e la spettroscopia, la
determinazione della quantità di acqua assorbita mediante riflettanza diffusa nel vicino infrarosso.

Pertanto si utilizzeranno attrezzature riferibili alle seguenti tipologie: Spettrometro di fluorescenza a Raggi X; Spettrofotometro ad assorbimento atomico; Diffrattometro a Raggi X; Microscopio polarizzante in luce trasmessa; Stereomicroscopio; Apparecchiature per foto e videoriproduzione al microscopio; Microdurimetro; Porosimetro; etc.

Inoltre, saranno studiate e sperimentate tecniche innovative basate sullo studio dei residui organici di interesse archeologico, come i materiali che appartengono alla categoria delle resine (anche fossili), dei balsami, degli adesivi, ecc., e sullo studio delle sostanze organiche eventualmente assorbite dai recipienti ceramici. Tali studi saranno condotti preliminarmente tramite tecniche analitiche come la gascromatografia abbinata alla spettrometria di massa e alla spettroscopia infrarossa (GC/MS e GC/IR), la spettroscopia di risonanza magnetica nucleare (NMR) e ancora la spettroscopia IR.

Successivamente si potranno sperimentare ulteriori tecniche, come la cromatografia liquida (HPLC) e la spettroscopia di assorbimento nell'ultavioletto e nel visibile, usualmente adoperate per lo studio dei coloranti organici, ma che potranno essere utili per l'analisi di residui più o meno solidarizzati ai materiali di base. Tale analisi incrementerà la disponibilità di dati volti all'individuazione della provenienza e degli spostamenti dei manufatti.

A supporto delle operazioni di estrapolazione dati ed analisi dei reperti saranno progettati e realizzati una serie di moduli software per il raggiungimento dei seguenti obiettivi:

1. costruire una base dati sulla composizione di oggetti di provenienza certa (località, bottega o anche autore) con le quali confrontare le composizioni misurate in oggetti di provenienza non nota o di autore sconosciuto;
2. gestione della persistenza dei dati rilevati dalle varie strumentazioni;
3. applicazione di tecniche di mining sui dati rilevati con lo scopo di individuare correlazioni tra reperti (per collegare e interpretare dati archeologici e di laboratorio);
4. sovrapposizione dei dati del reperto su mappe cartografiche.

Grazie all'elevato numero di campioni analizzati sarà possibile individuare importanti correlazioni tra i reperti.

Questi obiettivi fortemente sinergici con quelli dell’OR 3, quando raggiunti, consentiranno di innescare un canale di alimentazione di informazioni verso la piattaforma software prevista nell’OR 5; in effetti, tutti i dati relativi ai reperti oggetto di studio dell’OR 3 conserveranno in un sistema informativo di catalogo che alimenterà lo schema concettuale integrato previsto in OR 5, integrando le informazioni trasmesse a quelle eventualmente già presenti in altri sistemi informativi di catalogo ed inerenti lo stesso reperto.
La sinergia da innescare tra i due OR si tradurrà nella esecuzione delle seguenti attività:

1. estensione del modello ontologico per la rappresentazione delle informazioni legate all’archeometria;
2. definizione del mapping del nuovo sistema informativo sullo schema concettuale integrato e delle procedure di allineamento con l’ontologia generale;
3. studio di algoritmi per il reasoning di supporto ad ulteriori azioni di indagine per la determinazione della provenienza e della tecnologia di fabbricazione.

• **Tipo attività: RI**

A.3.4 - Nuovi sistemi per la pulitura e la protezione di reperti recuperati dall’ambiente subacqueo

• **Descrizione:**
Scopo dell’attività è lo studio e la selezione di diversi sistemi di pulitura, sia tradizionali che innovativi, per rimuovere i prodotti di degrado depositati sulla superficie del reperto e lo studio di un corretto approccio protettivo e consolidante sulle opere che mantenga un alto grado di compatibilità e un basso impatto sui materiali costitutivi.

La fase di pulitura deve tenere conto dell’alta etereogeneità delle condizioni di degrado in cui le opere di provenienza sottomarina si trovano, sia come fasi superficiali di alterazione (esfoliazione, polverizzazione, decoesione, variazioni cromatiche, presenza di depositi di natura inorganica, patine di natura biologica, presenza di organismi marini ecc…) che come alterazioni strutturali (microfessurazioni, aumento della porosità, diminuzione della tenuta statica, fratture, perdita di materiali di coesione quali le malte ecc…). Da questo punto di vista diventa importante la conoscenza e la selezione dei principali prodotti chimici utilizzati nelle fasi di recupero, sia per ottenere un’alta efficacia nell’intervento di rimozione del degrado sia per ridurre al minimo l’eventuale invasività dei prodotti nei confronti dei sustrati litoidi.

In particolare il luogo di giacitura in ambiente marino di questi reperti, suggerisce uno studio approfondito dei più nuovi prodotti antimicrobici e antivegetativi presenti sul mercato e con le migliori caratteristiche ecotossicologiche, in modo da selezionare i più idonei per la rimozione di alghe e di altre componenti biologiche.

A tale scopo la selezione si smenterà sui principi attivi già ampiamente testati nel campo del restauro dei Beni Culturali, affiancata da altri prodotti di nuova generazione, sia miscibili in solventi inorganici che organici. Sono previste tutte le fasi di sperimentazione dei prodotti in laboratorio, su provini campione con le stesse caratteristiche geomorfologiche dei reperti recuperati. In particolare sono previste prove di efficacia antimicrobica e antivegetativa, prove di alterazione acida e basica, misure di alterazione cromatica, prove di tenuta da dilavamento, valutazione nel
tempo dell’efficacia dei principi attivi. Le prove verranno effettuate anche in condizioni di stress, dopo invecchiamento dei provini esposti ad emissioni UV, cicli termici ed eventuali attacchi acidi.

Lo studio dei sistemi protettivi/consolidanti, sia tradizionali che innovativi, prevede la ricerca e la selezione di prodotti di diversa natura chimica (cere, resine acriliche, viniliche, siliconiche, fluorurate, ecc.) nell’ambito di principi attivi già largamente testati nel campo del restauro dei Beni Culturali, oltre che nuovi prodotti di ultima generazione. Anche in questo caso verranno effettuate tutte le prove di laboratorio necessarie a valutare l’efficacia dei polimeri nella protezione dei manufatti, sia tal quale che post invecchiamento, quali ad esempio variazioni di porosità, profondità di penetrazione del polimero, tenuta del potere idrofobico, variazioni cromatiche ecc..

È importante in questa fase che la selezione dei protettivi/consolidanti sia compatibile con i trattamenti di rimozione del degrado biologico: a tale scopo è prevista una fase di studio sulle potenziali interazioni tra i diversi prodotti applicati, in modo da selezionare principi attivi compatibili tra loro e privi di interferenza chimico-fisica sui manufatti.

Infine, dopo la fase di sperimentazione in laboratorio, è prevista la validazione in situ dei sistemi innovativi emersi dalla ricerca, su reperti significativi da un punto di vista delle alterazioni strutturali e del degrado dei materiali.

• Tipo attività: RI

A.3.5 - Studio e realizzazione di un prototipo di una “Camera Termo/Ultrasonica/Chemio/Barica (TUCHEB) per il restauro di beni culturali”

• Descrizione

Con la sigla TUCHEB si definisce un vero e proprio laboratorio automatizzato costituito da un camera in acciaio inossidabile di volume adeguato nella quale sono collegati i seguenti accessori e strumenti di misura:
– Emettitori a microonde;
– Emettitori ad ultrasuoni;
– Sensori per la rivelazione della temperatura;
– Sensori per la rilevazione della pressione;
– Sensori per la rilevazione del livello di fluidi all’interno della camera;
– Naso elettronico per la rivelazione di sostanze chimiche.

Per realizzare tale camera sarà necessario anzitutto effettuare una ricerca dei parametri operazionali per il trattamento ottimale di manufatti di interesse culturale storico ed artistico e la determinazione e sperimentazione dei solventi e reagenti chimici più adeguati al eliminazione dalla superficie di manufatti di interesse storico artistico e culturale di patine superficiali, in assenza ed in presenza di ultrasonicazione.

In un secondo momento risulterà necessaria la messa a punto di un naso elettronico, radiatori a micronde, e radiatori ultrasonici per la determinazione di sostanze
chimiche, il condizionamento termico e vibromecanico della camera TUCHEB, seguita dalla standardizzazione e validazione sul piano qualitativo e quantitativo dei sensori tipo “naso elettronico” mediante metodologie analitiche di spettrometria di massa.

Queste fasi preliminari portano alla progettazione e realizzazione della camera TUCHEB completa di:
- tutti gli apparati necessari a cambiare temperatura, pressione, ambiente chimico;
- l’apparato di sonicazione;
- Le interfacce di controllo automatico ed il computer;
- Il software operazionale e di controllo;
- Gli accessori esterni;
- Le alimentazioni elettriche e di fluidi chimici.

La camera TUCHEB così messa a punto richiede quindi una sperimentazione per la verifica e l’ottimizzazione delle sue prestazioni, e la stesura di manuali d’uso.

Come ultimo punto dell’attività si prevede la difesa del know how acquisito nel corso del progetto (brevettazione di ulteriori risultati e marketing dell’apparecchiatura prodotta).

- Tipo attività: RI 70% SP 30%

A.3.6 - Sistemi e tecnologie innovative per il controllo delle condizioni climatiche ambientali nei luoghi di conservazione dei beni.

- Descrizione
 Scopo dell’attività è lo studio delle migliori condizioni chimico-fisiche di conservazione dei reperti di origine sottomarina già restaurati.
 Lo studio dei parametri per una corretta conservazione in un ambiente indoor si basa evidentemente su alcuni principi generali ma deve poi essere adattata alle caratteristiche morfologiche delle opere d’arte da conservare, che in questo caso sono rappresentate da reperti sottoposti per lungo tempo a condizioni estreme e con danni conseguenti di notevole entità.
 In questa attività verrà presa in esame la fase finale del recupero dei reperti, e cioè la fase di conservazione: verranno quindi esaminati e controllati tutti i principali parametri del controllo del microclima degli ambienti in cui le opere restaurate andranno collocate; intervenendo anche con modifiche di alcuni di questi parametri per meglio adattare le condizioni conservative alle tipologie dei materiali e diminuire così i rischi di eventuali nuove forme di degrado e interventi successivi sulle opere.
 La prima fase consiste in un’approfondita ricerca bibliografica e normativa su tutti i principi applicati alla conservazione delle opere d’arte, includendo anche uno studio sulle pubblicazioni nazionali ed internazionali relative al recupero in passato di reperti subacquei e sul loro stato di conservazione.
 Verrà successivamente redatto un progetto generale di conservazione, in cui saranno elaborati tutti i principali parametri di controllo del microclima incrociati con le
diverse tipologie di materiali recuperati, sia naturali che artificiali, e con le differenti modalità di intervento di restauro che le opere hanno subito: infatti la fase di conservazione non può prescindere da un’attenta analisi delle originali condizioni conservative dell’opera e dai trattamenti subiti in seguito, come ad esempio il tipo di consolidamento effettuato.

In base al progetto redatto in precedenza, diventa necessario poi studiare ed elaborare le condizioni effettive in situ degli ambienti in cui le opere verranno collocate. A tale proposito sono previste diverse serie di campagne analitiche con rilievi ad intervalli costanti e di durata significativa.

I parametri rilevati saranno i principali parametri di controllo, quali Temperatura, Umidità relativa, Umidità specifica, punto di rugiada, componente di irraggiamento UV, polveri sottili, inquinanti biologici. In base ai risultati ottenuti sarà possibile elaborare delle mappe in sezione orizzontale e verticale, oltre che in 3D, in grado di visualizzare gli andamenti dei gradienti dei parametri in esame nel corso del tempo (365 gg e 24 h).

Dai dati ottenuti sarà possibile redarre un progetto conservativo finale in cui verranno integrati tutti i dati ottenuti con la finalità di elaborare degli schemi efficaci di conservazione delle opere in base alle loro caratteristiche morfologiche, ai danni subiti nel corso del tempo, alle fasi di recupero restaurativo che hanno subito e agli spazi espositivi dove saranno collocate.

Per la realizzazione di questa attività verranno utilizzati i laboratori sperimentali Piani-diagnostici, finalizzati alla conservazione ed al restauro dei Beni Culturali, il cui rafforzamento è previsto nell’ambito del progetto.

- **Tipo attività: RI**

A.3.7 - Sistemi e tecnologie innovative per la realizzazione di un prototipo di teca finalizzata alla conservazione di materiali sensibili al microclima

- **Descrizione**

Scopo dell’attività è la realizzazione di un prototipo di teca espositiva da utilizzare all’interno di musei o aree espositive aperte al pubblico, atta a preservare l’integrità dei reperti archeologici contenuti al suo interno nel rispetto delle indicazioni fornite dalla norma UNI 10829/1999 e della UNI 10969/2002.

La fase di progettazione prevede un primo step operativo di individuazione dettagliata delle specifiche di progetto, in cui saranno analizzate tutte le componenti necessarie alla realizzazione della teca.

Successivamente, in base alle specifiche analizzate, verranno effettuate delle simulazioni del comportamento termoigrometrico dell’ambiente per mezzo di software dedicato, con particolare attenzione alle migliori condizioni di conservazione dei manufatti legnosi e ceramici.

Sarà poi eseguito lo studio, la progettazione e la costruzione di un prototipo di teca da esposizione attraverso la realizzazione di un circuito aeraulico indipendente di
tipo misto, ossia passivo (basato sull’utilizzo di sostanze igroscopiche) ed attivo (basato sull’utilizzo di moduli Peltier). Il sistema passivo di controllo dell’umidità impiegherà un gel di silice in grado di portarsi in equilibrio igrometrico con l’ambiente circostante per adsorbimento (desorbimento) di vapor d’acqua. Il sistema di controllo passivo che utilizza il gel di silice avrà il pregio della affidabilità e sicurezza di funzionamento (il gel di silice non necessità di alimentazione e/o controllo esterni e può essere utilizzato anche senza ventilazione meccanica), con controlli (ed eventualmente ricondizionamenti) periodici e una sostituzione ad intervalli di tempo programmati. Il sistema attivo di controllo dell’umidità utilizzerà dispositivi collegati alla rete elettrica in grado di umidificare (deumidificare) in modo diretto. A differenza del sistema passivo, la deumidificazione avviene per raffreddamento dell’aria al di sotto della sua temperatura di rugiada. Infine verrà effettuata la fase di sperimentazione finalizzata alla calibrazione dei parametri di funzionamento.

- **Tipo attività:** SP

A.3.8 - Sviluppo di tecnologie innovative per la protezione sismica dei Beni Culturali

- **Descrizione**

Questa attività è finalizzata allo sviluppo di dispositivi antisismici in grado di garantire la riduzione dell’accelerazione orizzontale trasmessa agli oggetti d’arte a valori inferiori a 0.1 g, per sismi caratterizzati da un valore di accelerazione orizzontale di ancoraggio dello spettro di risposta elastico minore od uguale a 0.35 g, corrispondente alla zona sismica 1 (zona di massima sismicità in Italia). Tale riduzione dell’accelerazione orizzontale consente di evitare danni significativi agli oggetti d’arte. L’attività si divide in due attività di ricerca principali, consistenti nello sviluppo di tecnologie e dispositivi antisismici per:

- l’isolamento sismico di edifici museali esistenti, con particolare riguardo ad edifici storici;
- l’isolamento sismico di singoli oggetti d’arte o di teche contenenti oggetti d’arte.
- I risultati dell’attività sono due prodotti principali:
 - tecnologie innovative per l’inserimento di isolatori sismici in edifici esistenti, in particolare edifici storici;
 - dispositivi antisismici innovativi per l’isolamento sismico di beni museali (singoli beni museali di grandi dimensioni, ad es. statue, o teche contenenti beni di piccole dimensioni).

L’isolamento sismico degli edifici museali è in genere da preferirsi, in quanto consente un elevato livello di protezione dell’edificio – sia nelle sue parti strutturali che nelle sue parti non strutturali ed impiantistiche - e del suo contenuto. Sebbene la tecnologia dell’isolamento sismico sia già disponibile ed utilizzata per edifici nuovi, nel caso di edifici esistenti, in particolare edifici storici, come spesso sono gli edifici adibiti a musei, la usa
implementazione necessita dello sviluppo di tecnologie per l’inserimento del sistema di isolamento sismico nelle fondazioni esistenti o mediante sottofondazione. Qualora l’isolamento sismico dell’edificio abitato a museo non fosse tecnicamente od economicamente possibile, si può aumentare il livello di protezione sismica di singoli oggetti d’arte, la cui vulnerabilità sismica o il cui valore storico-artistico siano particolarmente elevati. L’isolamento sismico di singoli oggetti d’arte – o di tecne contenenti oggetti d’arte – necessita dello sviluppo di dispositivi ad hoc, capaci di garantire un elevato periodo proprio nonostante la ridotta massa degli oggetti, e dotati di un ridotto ingombro, in modo da ridurme il più possibile l’impatto architettonico.

Lo sviluppo delle tecnologie e dei dispositivi sopra descritti avverrà con il fondamentale supporto del Laboratorio Ufficiale di Prove sui Materiali e sulle Strutture del Dipartimento di Meccanica dei Materiali dell’Università degli Studi Mediterranea di Reggio Calabria e dell’ENEA C.R. Casaccia. In particolare, presso il Laboratorio dell’Università di Reggio Calabria saranno effettuate prove su dispositivi in scala ridotta. Il partenariato proponente produrrà prototipi dei dispositivi antisismici sviluppati, che saranno validati sperimentalmente attraverso tali prove.

- **Tipo attività: SP**

2.2.3.d) Risultati per attività e partner coinvolti

<table>
<thead>
<tr>
<th>OR</th>
<th>Attività</th>
<th>Risultati</th>
<th>Responsabile</th>
<th>Partner Coinvolti</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Report</td>
<td>Unical</td>
<td>Unical</td>
<td>Unicz/Unirc/CM Sistemi Sud/ Calpark</td>
</tr>
<tr>
<td></td>
<td>Prototipi</td>
<td></td>
<td></td>
<td>/Consorzio Tebaid/ Tecnimp /Fip</td>
</tr>
<tr>
<td>3.1</td>
<td>Report Banca Dati Prototipo</td>
<td>Cm Sistemi Sud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Report</td>
<td>Unical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Report Prototipo</td>
<td>Unical</td>
<td></td>
<td>Calpark, Consorzio Tebaid</td>
</tr>
<tr>
<td>3.4</td>
<td>Report Prototipo</td>
<td>Unical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Report Prototipo</td>
<td>Unical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Report Prototipo</td>
<td>Unical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Report Prototipo</td>
<td>Tecnimp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Report Prototipo</td>
<td>Fip</td>
<td></td>
<td>Unirc</td>
</tr>
</tbody>
</table>

Tabella 7 – Risultati, responsabili e partner OR3
2.2.3.e) Input dell’OR3

- I prodotti biocidi e protettivi innovativi, a più alta efficacia e minor impatto degradativo sulle opere, rispetto a quelli attualmente in uso nel restauro.
- Sistemi per l’analisi dei valori acquisiti durante una campagna microclimatica con una elaborazione sistematica in funzione del tempo di rilevazione.
- I sistemi di controllo di tipo misto, che attualmente rappresentano l’ultima frontiera delle tecnologie del controllo del microclima interno poiché rappresentano il miglior bilanciamento fra costi e prestazioni. L’impiego di questa tecnologia nell’ambito museale rappresenterà dunque un contributo prezioso nel dimensionamento degli impianti a supporto del microclima interno ed esterno.

2.2.3.f) Output dell’OR3

- Un sistema di scanner 3D miniaturizzato.
- Pianificazione di intervento diagnostico sui reperti archeologici subacquei;
- Modelli e procedure in grado di svolgere approfondite analisi sui reperti marini, in particolare ceramiche, vetro antico e pietre lavorate, e di definirne la composizione e le tecniche di lavorazione;
- Nuovi sistemi di pulitura, basati su principi attivi sia tradizionali che innovativi, per rimuovere i prodotti di degrado depositati sulla superficie del reperto;
- Conoscenza delle interazioni tra biocidi e protettivi, anche applicati in fasi differenti;
- Camera per gli interventi di recupero dei reperti con verifica degli standard di funzionamento, elaborazione dei risultati ottenuti e stesura di manuali d’uso;
- Progetto conservativo finale in cui verranno integrati tutti i dati ottenuti dalle misure effettuate con la finalità di elaborare degli schemi efficaci di conservazione delle opere in base alle loro caratteristiche morfologiche, ai danni subiti nel corso del tempo, alle fasi di recupero restaurativo che hanno subito e agli spazi espositivi dove saranno collocate;
- Analisi microclimatica dei singoli parametri, rilevati però in punti significativi dello spazio analizzato che consentono di misurare le variazioni termo-igrometriche sia nell’arco delle 24 ore che stagionali, con un confronto tra i periodi più freddi e quelli più caldi e quindi di elaborare delle mappe in sezione orizzontale e verticale che mostrano gli andamenti dei valori e non solo i dati grezzi misurati;
- Prototipo di una teca espositiva per la conservazione dei reperti suscettibili di degrado all’esposizione negli ambienti indoor.

2.2.3.g) Collegamenti tra l’OR3 e gli altri OR del progetto

Tutti i dati ed i report prodotti nell’OR3 confluiscono nell’OR5 che funge da raccoglitore di tutte le informazioni circolanti ed utili per alimentare un datawarehouse della conoscenza. In particolare l’OR3 produce tecniche e tecnologie che forniscono in output una serie di
dati relativi ai reperti che sono stati recuperati e assoggettati ad analisi archeometriche e ad operazioni di diagnostica, restauro e conservazione.
L’OR3, infatti, agisce sul reperto riportato in superficie dal sito per effettuare in primo luogo un’analisi di provenienza spazio-temporale sfruttando i dati gestiti all’interno dell’OR3 e presenti nella knowledge-base dell’OR5, ed in secondo luogo per effettuare le operazioni di restauro necessarie e di messa in sicurezza del reperto dopo il restauro, comunicando i risultati delle analisi e dello stato di degrado del reperto alla knowledge-base dell’OR5.
Le risultanze dell’OR3 saranno inviate secondo opportuni formati all’OR4 per la fase di fruizione da parte degli utenti secondo le tecniche ed i canali che l’OR4 metterà a disposizione.

2.2.3.h) Riferimenti bibliografici dell’OR3
22. Prascioul M., Carpentiero A., Kumar R., Cojoc D., Cabrini S., Businaro L., Romanato F.,
Di Fabrizio E., Recchia F., Parmigiani G., Electromagnetically Actuated Surface
Micromachined Free Standing Torsion Beam Micromirror Made by Electroplated
23. Ruppé Carol V., Barstad Janet F., International Handbook of Underwater Archaeology,
24. Schlichtherle, H.; Kramer, W., Underwater Archaeology in Germany, International
25. Smith, Hance D.; Couper, Alastair D., The management of the underwater cultural
2.2.4) OR4: Sistema di Gestione, Monitoraggio e Controllo RealTime e di Presentazione e Disseminazione dei risultati Scientifici

2.2.4.a) Descrizione dell’OR4

L’obiettivo realizzativo OR4 è finalizzato alla messa a punto di servizi innovativi per la presentazione di contenuti, visualizzazione di percorsi e output di strumenti. Può essere utilizzato per iniziative di formazione educative, per l’analisi condivisa di dati e simulazioni scientifiche, ma anche per offrire servizi per eventi tecnologici o di comunicazione integrata.

Questo OR difatto rappresenta l’elemento di sintesi visiva e decisionale di tutti gli OR e cioè in questo OR si creeranno le procedure di acquisizione dei dati real time e si visualizzeranno i dati ad uso degli esperimenti in essere o delle fasi di indagine e rilievo in corso d’opera. In particolare durante la fase real time sarà possibile ricevere il supporto alle decisioni dal sistema esperto di pianificazione oggetto di realizzazione dell’OR2.

La necessità di divulgare i dati e di valorizzare i risultati della ricerca ma anche del patrimonio culturale sta sempre più diventando una priorità nel settore della ricerca. Infatti questo e' lo strumento per promuovere nuovi interessi della comunità ed attirare nuovi interessi e fondi per la ricerca scientifica. Inoltre la divulgazione dei risultati soprattutto nel caso in cui vi è del valore aggiunto crea anche l’opportunità di *vetrina* (sala visione per almeno 20 o 30 persone) a livello internazionale utile ad attirare interessi e sinergie di ricerca con i paesi del Mediterraneo o di altre aree internazionali che possono trovare un beneficio dalla sinergia anche per il loro progetti nazionali.

La simulazione di scenari operativi e il confronto real-time con i dati di campagna per caratterizzare, in *cabina di regia* (sala visione dove presentare i dati del prodotto SW dell’OR2), la missione effettiva rispetto a quella programmata; questo al fine di rendere
possibili decisioni operative con l’obiettivo di reperire nuovi dati utili o modificare il piano di intervento correggendo le ipotesi di missione preventivate o adeguare le risorse durante le fasi operative con il supporto di dati di quick-look.

Ed anche per:

- il controllo di scenari operativi e degli operatori coinvolti in tali interventi per la validazione delle procedure di sicurezza;
- la verifica real time di itinerari sommersi per parchi sottomarini in conformità alle vigenti leggi ed alle norme di messa in sicurezza;
- la correlazione fra dati derivanti da apparati di monitoraggio (immagini live, dati di scansione, immagini fotografiche) con oggetti ed ambienti 3D presenti nella banca dati storica-digitale al fine di studiare le ipotesi di reperto ancora sommerso la disposizione probabile dei reperti nel sito la loro datazione e l’eventuale necessità di intervenire in profondità per recupero di reperti di interesse scientifico o la decisione di mettere in sicurezza l’intero sito per evitare atti di asportazione o ruberie.

Per quanto riguarda il rilievo saranno sviluppate tecniche innovative SW per ricostruire il modello digitale dei reperti e dei siti di interesse storico archeologico, di elaborare graficamente i dati ottenuti dalla fase di scavo, e rappresentarli mediante modelli virtuali in tempo reale.

La contestualizzazione di quanto rilevato con quello che si ipotizza possa essere presente o con le possibili disposizioni di altri reperti connessi a quello rilevato sia per la tipologia di reperto che per la sua specifica posizione richiedono un accesso a banche dati nuove che possano ripresentare casi di siti già analizzati o con simulazioni di disastro (nafragio) particolarmente significative che possano far presumere che sotto o a latere dei reperti trovati ve ne potrebbero essere altri di maggiore interesse scientifico o a rischio di furto o altro.

Questa sintesi visiva richiede un apposito sistema di visualizzazione che funga da luogo di monitoraggio e controllo operativo da affiancare al sistema di visualizzazione utilizzato come sala decisioni e pianificazione intervento dove è possibile correlare i dati del monitoraggio e controllo con quelli della simulazione.

Figura 7 - Foto di reperti subacquei
Nell’OR4 è prevista anche l’acquisizione di una serie di apparati utili alla creazione dei sistemi di supporto alla visualizzazione e necessari alla validazione dell’intero progetto di ricerca per le fasi off-line e real time della sperimentazione e della dimostrazione.

Nello specifico la strumentazione di supporto per la visualizzazione immersiva si compone di:

- una sala visione virtuale per una visione collettiva (in stereovisione e monovisione) di almeno 10-20 persone (vetrina). Durante la fase di disseminazione e presentazione dei dati sarà possibile inserire il ricercatore o chi presenta i suoi risultati della ricerca all’interno del mondo virtuale o delle immagini video (con tecniche di virtual set real time) che renderanno la dissertazione sinergica ai contenuti e compatibile anche alla sua divulgazione in network TV di tipo educational o in circuiti TV internazionali adibiti alla ricerca;
- un sistema di visualizzazione interattivo per la simulazione visiva con contestualizzazione al mondo archeologico sottomarino ed agli scenari più significativi al fine dell’integrazione della strumentazione robotica e di telepresenza (visita virtuale remotizzata) mediante impiego di piattaforme dinamiche che replichino le accelerazioni e gli spostamenti di sottomarini filoguidati (sala regia);
- un sistema di produzione di nuovi contenuti derivati e di generazione di banche dati video dove storicizzare gli interventi nei siti e reperire on line durante nuovi interventi casi di procedure già eseguite al fine di supportare nuove decisioni in casi di scenari verosimili a quelli già valutati nel passato o più complessi ma che possano trarre da casi precedenti elementi di supporto complementari ed utili all’accrescimento della conoscenza.

Ad esempio si può citare il caso di un’ancora romana snodabile, che di fatto fino a prima del suo reperimento non appariva tra le tecnologie conosciute in quel particolare periodo.
storico anzi si credeva che fosse una prerogativa marinara dell’impero britannico. Questo caso ci può aiutare a capire come da nuove repertazioni potrebbe nascere un nuovo punto di vista o una nuova ipotesi simulativa che potrebbe modificare alcune delle analisi effettuate in precedenti fasi di pianificazione.
La creazione di nuovi contenuti video digitali e 3D da associare al sistema come elementi in aggiunta che possano far accrescere la conoscenza scientifica è uno degli obiettivi di questo OR. Per ottenere questo risultato è necessario che siano realizzate le seguenti attività:
• sviluppo di un middleware per la virtualizzazione dei dati standard e dei device che determinano la conoscenza operativa del centro con il sistema autore di controllo e gestione;
• un sistema SW per la gestione ed il monitor e control dei dati live e la loro correlazione con i parametri di previsione e simulazione precedentemente elaborati (OR2) per la gestione operativa della missione (usando il sistema di visualizzazione della sala controllo e regia missione);
• un sistema dispatching multicanale innovativo dei dati acquisiti delle missioni di recupero sottomarino, sistema di visualizzazione dei dati scientifici e dei dati operativi correlati con immagini virtuali e con immagini live;
• un sistema per la creazione ed archiviazione on line di contenuti a valore aggiunto in formato digitale (centro di digitalizzazione con tecniche di virtual set) per la larga divulgazione come canali tematici TV a livello nazionale ed internazionale sia satellitari che digitali terrestri e prodotti editoriali, in ambiente multicanale, derivati sul tema come giochi, cd rom infodivulgativi, DVD interattivi, etc...
L’integrazione tra le componenti del sistema di monitor e control e le componenti del sistema live sarà realizzata secondo due diversi approcci:
• connessione wireless: nel caso di trasmissione real time dei dati dai dispositivi operanti in situ si studierà un sistema di connessione basato su trasmissioni satellitari. Come noto un accesso real time ad informazioni remote richiede notevoli larghezze di banda ed algoritmi di compressione dei dati. Entrambi gli aspetti saranno opportunamente studiati al fine di ottimizzare la risorsa di interconnessione che in questo caso risulta essere sempre limitata;
• connessione mediante supporto: l’invio di grosse quantità di dati da elaborare e studiare in tempi differiti da quelli di acquisizione sarà effettuato tramite travaso diretto delle informazioni su supporto fisico. Tale meccanismo è ormai ampiamente utilizzato e nelle barche di appoggio già esiste tutta la tecnologia di processing e di storage necessaria ad una missione.

La caratteristica del prodotto finale dell’OR4 è di avere tutta una serie di procedure che in tempo reale ed off-line possano offrire e presentare in modalità aggregata dati e soluzioni operative di supporto alla cabina di regia o ad altri utenti del sistema.
A tale scopo la figura che segue presenta un diagramma di contesto che mostra in modo sintetico la tipologia dei dati che saranno trattati in questo OR.
A partire dal precedente diagramma la Tabella sotto riportata mostra la descrizione delle attività dell'OR4 che sono state identificate:

<table>
<thead>
<tr>
<th>Attività</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.4.1</td>
<td>Progettazione del sistema di visualizzazione comune alla presentazione dei dati scientifici nelle modalità tipiche della natura degli interventi e della tipologia dei dati</td>
</tr>
<tr>
<td>A.4.2</td>
<td>Realizzazione di tutte le interfacce di comunicazione verso gli apparati di campo ed i sensori</td>
</tr>
<tr>
<td>A.4.3</td>
<td>Sviluppo delle procedure SW Real-Time per monitorare tutte le attività in fase operativa ed integrare questa fase operativa con il sistema di pianificazione/simulazione risultato dell'OR2</td>
</tr>
<tr>
<td>A.4.4</td>
<td>Gestione di un'archivio multimediale con i dati di tutte le registrazioni video degli interventi indicizzati in base alla tipologia di intervento per catalogare tecniche e procedure di intervento in un archivio storico</td>
</tr>
<tr>
<td>A.4.5</td>
<td>Sistema di produzione di contenuti derivati distribuibili alla comunità scientifica ed agli addetti ai lavori ed alle autorità competenti in modalità multi canale su differenti piattaforme e terminali</td>
</tr>
</tbody>
</table>

Tabella 8 – Elenco Attività OR4
La figura che segue mostra invece in dettaglio la scomposizione del OR nelle attività previste con una prima descrizione delle interazioni fra le attività stesse:

Figura 10 - Primo Livello di Decomposizione OR4
2.2.4.b) Stato dell’arte dell’OR4

Le tecnologie della realtà virtuale e dell’augmented reality sono state utilizzate in contesti prevalentemente internazionali a scopi molto particolari ed in progetti nel settore della difesa e dell’addestramento dove la componente decisionale ed il real time degli eventi e delle condizioni al contorno si sintetizzano in uno scenario complesso il cui costo formativo e’ molto alto anche per il numero di apparati e di risorse umane necessario ad eventuali simulazioni.

A titolo di esempio possiamo citare un progetto per il training virtuale nei settori navale e sottomarino:

In questo contesto le tecnologie sono applicate ad un ambiente cooperativo di intervenenti 15 imbarcazioni raggruppate in sette differenti categorie di skill, con risultati ottenuti estremamente efficaci e con un forte risparmio di costi formativi e di costi energetici nell’uso di ambienti simulati.
Le stesse tecnologie sono state anche usate per rappresentare le banche dati frutto della raccolta, del processamento e dell’analisi dei dati marini, come ad esempio nel progetto MODB: Mediterranean Oceanic Data Base
In questo caso la presentazione del dato scientifico e la sua visualizzazione 3D sono serviti a presentare animazioni delle evoluzioni dei dati marini in termini di temperatura e salinità. I dati acquisiti e processati hanno contribuito a creare un’ archivio storicizzato di informazioni ad uso della comunità scientifica e del largo pubblico.
Le seguenti referenze sintetizzano quanto è oggi disponibile in termini di simulazione matematica e di dati da essa derivati e quanto sia rilevante il percorso di correlazione di questi dati con quelli attinenti alla conservazione del patrimonio culturale sommerso.

Riferimenti:

http://modb.oce.ulg.ac.be/modb/welcome.html

In altri paesi dove l’archeologia ha una sua specifica valenza istituzionale si sono anche sviluppati sistemi e banche dati mirate su specifici siti ritenuti di rilievo come ad esempio il progetto di ricostruzione virtuale di ambienti archeologici sottomarini.

La Grotta di Cosquer è localizzata a Cape Morgiou, vicino Marsiglia ed è accessibile dal mare attraverso un tunnel di 175 metri che si trova a 37 metri di profondità dal livello del mare.

In particolare il dipartimento svolge un ruolo di indirizzo a livello nazionale e ha come obiettivo anche quello di definire e studiare la legislazione per governare e gestire il patrimonio culturale marino.
Le varie linee di lavoro che stanno persegendo riguardano la classificazione del patrimonio, la conservazione e la ricerca di nuove tecniche, ma anche la diffusione verso il mondo scolastico e l’organizzazione di eventi scientifici per il largo pubblico al fine di sensibilizzare e stimolare la cultura collettiva al rispetto del patrimonio sommerso.
CULTURA E INNOVAZIONE S.C.a R.L.

Si riportano a titolo di esempio alcune dei risultati in essere:

Classification of maritime trade
Theme-wise, research is conducted both on the great trade routes and the redistribution business; trade in metals and construction materials enjoys an important status. Chronologically, finds from antiquity, between the sixth century BC and the seventh century AD, are particularly frequent.

Outlook
Today, research is aimed at the least-studied periods (High Antiquity, Late Roman Empire, High Middle Ages, Modern Period), as well as the types of commerce that are least known.

Naval Archeology
This program aims to study boats as intact units, guided by three aspects:

- **the boat as a mechanism** that reflects the technical development of a society
- **the boat as instrument** adopted for a specific function and for particular needs (trade, war, fishing)
- **the boat as living and working space** (study of personal effects of the crew and passengers, onboard materials, and working tools)

Per gli aspetti tecnologici riportiamo la bibliografia relativa alle tecniche a cui intendiamo far riferimento ed alle principali problematiche ad esse connesse come: Realtà virtuale, Augmented Reality, Set Virtuali, tecniche di digitalizzazione su standard TV (DvBH).

In particolare per gli aspetti tecnologici **per la visualizzazione Stereo evidenziamo la tecnica di Polarizzazione Infitec** – una tecnologia alternativa per cui le informazioni stereo sono incorporate nella lunghezza d’onda del colore dell’immagine proiettata. Tale tecnologia, congiuntamente all’uso di proiettori DLP, risulta eccellente nella separazione delle immagini, elimina effetti di “ghosting” e consente allo spettatore un’ampia libertà di movimento e di inclinazione della testa.
Per la parte di creazione di nuovi contenuti multicanale le tecniche video real time (virtual set) che consentono integrazioni di dati reali e virtuali contestualizzati nello spazio e nel tempo e che riteniamo particolarmente efficace in questo contesto insieme alle tecniche live di ripresa di immagini stereografiche.

Nello sviluppo tecnologico dei sistemi televisivi la trasmissione di segnali attraverso lo standard digitale costituisce una tappa di capitale importanza. Da un lato, il digitale rappresenta il momento di convergenza tra la televisione, l'informatica e le telecomunicazioni, dall'altro rende l'apparecchio televisivo uno strumento efficace e comodo per l'offerta di servizi interattivi, che si aggiungono così alla tradizionale disponibilità di contenuti televisivi.

All'origine di tale evoluzione c'è il progetto Digital Video Broadcasting (DVB) promosso dalla Commissione europea con lo scopo di definire standard comuni. Il progetto, a cui hanno partecipato 170 società coinvolte nei diversi settori dell'industria televisiva, ha raggiunto l'obiettivo di stabilire un unico standard condiviso su scala europea per le trasmissioni televisive digitali terrestri (DVB-T), via satellite (DVB-S) e via cavo (DVB-C). Questi standard sono stati adottati anche da altri Paesi non europei.

L’evoluzione del servizio televisivo verso forme avanzate di interattività, la convergenza sulla piattaforma digitale di servizi e funzioni tradizionalmente offerti in altro modo (es. e-mail, e-commerce, giochi, ecc.), la crescente complessità dei contenuti, delineano un’architettura dei servizi molto più complessa e a più alto valore aggiunto di quella televisiva tradizionale e determinano una segmentazione della catena del valore, con l’identificazione di nuove competenze e responsabilità e la necessità di disposizioni regolatorie diverse rispetto a quelle del tradizionale assetto. Lungo la catena del valore vengono a trovarsi il produttore dei contenuti, il fornitore dei servizi e il distributore del segnale. Queste tendenze, unitamente alla riduzione dei costi di trasmissione dovuti alla maggiore capacità trasmissiva a parità di risorse frequenziali, possono abbassare le barriere d’ingresso e moltiplicare le possibilità di offerta da parte di nuovi soggetti nel mercato.

I vantaggi dello standard digitale possono riassumersi, sinteticamente, in due principali categorie.

La prima riguarda il potenziamento dei servizi televisivi in termini di quantità e qualità. Innanzitutto, su ogni frequenza utilizzata per trasmettere un programma in tecnica analoga, può essere trasmesso un numero di programmi digitali da quattro a dieci. La trasmissione digitale, inoltre, offre una migliore qualità audio-video dovuta all’immunità dai disturbi di propagazione tipici della tecnica analoga (ad esempio, riflessioni e cammini multipli) e apre la prospettiva verso l’utilizzo di formati diversi dal classico 4:3, ad esempio il formato 16:9 detto anche wide-screen, e di definizioni maggiori, ad esempio l’HDTV nelle sue versioni 720 righe (a scansione progressiva) o a 1080 righe (a scansione interlacciata). Con la tecnica digitale, infine, il broadcaster può anche realizzare efficaci compromessi tra esigenze di miglioramento della quantità e della
CULTURA E INNOVAZIONE S.C.a R.L.

qualità, usando flessibilmente le risorse di trasmissione: ad esempio, in una determinata area di copertura può ridurre il numero dei programmi trasmessi in cambio di una maggior qualità delle immagini, che potrebbero essere diffuse anche ad alta definizione. Le reti digitali terrestri presentano tre ulteriori pregi rispetto alle reti satellitari e via cavo: portabilità dell’apparato TV; mobilità per l’utente; regionalità (limitata per il satellite, costosa per il cavo).

La seconda categoria di vantaggi riguarda la possibilità di usufruire di applicazioni multimediali e servizi interattivi, utilizzando un tradizionale apparecchio TV, collegato ad un ricevitore digitale - detto Set Top Box (STB) - oppure un nuovo tipo di apparecchio, detto televisore digitale integrato (iDTV, integrated Digital TV set). La multimedialità, in un contesto televisivo, viene intesa come la possibilità di trasmettere flussi informativi associati al servizio convenzionale. Esempi elementari di flussi informativi associati sono i sottotitoli e l’audio multilingua. Esempi di maggiore complessità possono essere rappresentati da applicazioni multimediali quali la Guida elettronica dei programmi (EPG., Electronic Program Guide) o i video-giochi.

Inoltre, se il STB o il ricevitore iDTV lo permettono, i flussi informativi associati consentono di "immagazzinare", nel STB o nel ricevitore, delle applicazioni multimediali. Queste ultime permettono, grazie alla capacità di elaborazione insite nel STB o nel ricevitore, una interazione fra applicazione ed utente: questo tipo di interattività viene detta “locale". Si parla invece di interattività propriamente detta quando il singolo utente ha la possibilità di scambiare informazioni di suo specifico interesse con uno o più centri servizi, gestiti da uno o più broadcaster, attraverso un canale di comunicazione a lui dedicato, detto canale di ritorno o canale di interazione. L’interattività è resa possibile dalla presenza, sull’STB o sull’iDTV, di un’interfaccia di comunicazione alla quale si può attestare una linea telefonica fissa (modem V90, modem ISDN, modem ADSL) o un collegamento senza fili (GSM, GSM/GPRS, UMTS o WiFi). Tutto ciò apre la possibilità di accesso a servizi di tipo Internet sul televisore e quindi anche agli utenti privi di personal computer.

Ricordando che l’OR4 riguarda la sperimentazione di un innovativo sistema di visita virtuale in un ambiente strutturato come un Virtual Reality Center (VRC), possiamo affermare che la necessità di integrazione tra Virtual Environments (VEs) e Artificial Intelligence (AI) è una problematica attuale e presenta differenti criticità. A tal proposito introduciamo un nuovo termine, Intelligent Virtual Environment (IVE), che rappresenta l’integrazione tra le tecnologie che si occupano di 3D per l’interazione Real Time, e quelle riguardanti AI o Alife. Le attuali potenze di calcolo disponibili permettono una reale integrazione tra sottosistemi orientati al "Visual Realism" e sottosistemi orientati "Intelligence Realism".

Le attività di R&S all’interno dell’OR2 e OR4, che si occuperanno di tale problematica, dovranno quindi essere rivolte verso la realizzazione di un IVE; risulta evidente quelli che sono i vantaggi apportati dall’utilizzo di un tale sistema rispetto alle tecnologie già esistenti: l’interazione real-time con un sistema IVE è sicuramente più motivante rispetto quella con i sistemi Text-Based, ed è inoltre in grado di proporre metodologie interattive.
che si avvicinano al linguaggio umano sia parlato che gestuale. Appartengono a tale categoria, i sistemi basati sull'insegnamento, che si stanno dirigendo verso un'interazione multimodale, spostandosi pertanto dalla semplice narrativa (text-based), verso quello che viene definito teatro virtuale.

L'Augmented Reality (o AR, è detta anche Mixed Reality o MR) è il termine con il quale si indica la tecnica che permette di visualizzare informazioni virtuali in overlay su ambienti reali. Un tipico sistema in AR è formato da un HMD (head mounted display), un apparato di tracking a 6-dof e una unità elaborativa di immagini grafiche 3d (un PC).

Nel contesto dei beni culturali tale tecnologia offre vantaggi facilmente intuibili: un utente che osserva i resti di bene archeologico (le rovine di un sito o la parziale ricostruzione di frammenti), se dotato di dispositivi di AR, può vedere sovrapposto la ricostruzione grafica 3d del bene originale.

Le caratteristiche salienti di tale tecnologia sono la contestualizzazione (le informazioni virtuali sono sempre relative al contesto reale) ed il real-time (cambiando il punto di vista reale viene automaticamente aggiornato anche l'overlay virtuale). I principali problemi tecnologici di tali sistemi risiedono nell'accuratezza dell'allineamento fra immagine reale e virtuale; errori di allineamento sono causati da un non corretto setup iniziale, dalla precisione dei sensori di posizione ed orientamento e dalla latenza fra input utente e generazione del frame visivo (il tempo di refresh dell'immagine, come per ogni applicazione in realtà virtuale, dovrebbe essere intorno ai 20 fps).
2.2.4.c) Attività dell’OR4

A.4.1 – Progettazione del sistema di visualizzazione comune alla presentazione dei dati scientifici nelle modalità tipiche della natura degli interventi e della tipologia dei dati

- **Descrizione:**
 Tale modalità di fruizione consente ad esperti del settore di partecipare attivamente alle diverse fasi in cui si articola la metodologia per analizzare i reperti archeologici sommersi, in quanto offre la possibilità di una visualizzazione immersiva interattiva, ovvero:
 - una visualizzazione dei dati raccolti in tempo reale;
 - un controllo diretto “da remoto” delle operazioni condotte in situ.

Attraverso la proiezione di ciò che i sistemi di acquisizione stanno riprendendo sott’acqua (come una scansione laser 3D di un reperto), i fruitori sono in grado, supportati da altre tipologie di informazioni (come quelle di carattere storico/artistico dell’opera se già riconosciuta) e tool di image processing, di fornire tempestivamente delle indicazioni su come procedere nell’indagine, controllando direttamente le operazioni (come, per esempio richiedendo una nuova scansione o indicando il punto dove procedere nella fase di prospezione).

Per garantire tali funzionalità verranno studiati opportune componenti SW/HD che consentano:
- la visualizzazione di modelli 3D interattivi;
- elaborazione di immagini;
- gestione da “remoto” delle indagini live;

La fruizione on-line richiede alte performance anche nella comunicazione dei dati.

- **Tipo attività: **RI e SP (la parte di attrezzature per il 50%)

A.4.2 – Realizzazione di tutte le interfacce di comunicazione verso gli apparati di campo ed i sensori

- **Descrizione:**
 In questa attività si realizzeranno tutte le procedure SW per gestire e controllare apparecchiature e sensori oggetto di monitoraggio e controllo durante la fase real-time. A tale proposito verrà realizzato uno strato SW in grado di virtualizzare le devices ed i dati provenienti dal campo. Le specifiche delle apparecchiature oggetto di questa attività sono quelle definite nel modulo di configurazione missione realizzato nell’OR2. che a sua volta include le specifiche della strumentazione realizzata negli altri OR.
• **Tipo attività**: RI

A.4.3 – Sviluppo delle procedure SW Real-Time per monitorare tutte le attività in fase operativa ed integrare questa fase operativa con il sistema di pianificazione/simulazione risultato dell’OR2

Descrizione:
Questa attività è il cuore del monitoraggio e controllo di missione operativa real-time. Questo SW riceve i dati di campo, li visualizza all’interno dello scenario simulato. Fornisce inoltre informazioni qualitative sul funzionamento degli strumenti oggetto di controllo ed offre all’utente la possibilità di inviare comandi operativi direttamente dalla cabina di regia.

• **Tipo attività**: RI

A.4.4 – Gestione di un’archivio multimediale con i dati di tutte le registrazioni video degli interventi indicizzati in base alla tipologia di intervento per catalogare tecniche e procedure di intervento in un archivio storico

Descrizione:
Questo sistema crea la banca dati conoscitiva a partire dalle informazioni video di campo, le correla temporalmente ai parametri di monitoraggio e controllo ed a tutte le informazioni contestuali multimediali al fine di storicizzare gli interventi. La consultazione di questa base dati storica potrà essere di supporto per approfondimenti scientifici successivi od investigativi. Durante successivi indagini in altri siti simili una ricerca indicizzata potrà fornire in real-time casi analoghi a supporto della cabina di regia. I contenuti informativi multimediali che compongono la base dati dovranno essere aggregabili per la generazione dei prodotti multimediali derivati che saranno prodotti durante l’attività 4.5. Tali contenuti saranno infatti arricchiti da informazioni strutturate aggiuntive che consentiranno di contestualizzare maggiormente le informazioni multimediali o porzioni di esse e metterle in correlazione in modo da facilitare le attività previste nella fase descritta di seguito.

• **Tipo attività**: RI e SP (la parte di attrezzature per il 50%)

A.4.5– Sistema di produzione di contenuti derivati distribuibili alla comunità scientifica ed agli addetti ai lavori ed alle autorità competenti in modalità multi canale su differenti piattaforme e terminali:
• Descrizione:
Oggetto di questa attività è lo sviluppo di procedure che permettano in tempo reale di preparare contenuti informativi adatti ad essere frutti su piattaforme multi-canale in altri centri di ricerca collegati o interessati alla sperimentazione. Lo stesso sistema sarà in grado di produrre prodotti multimediali derivati da inserire in format divulgativi scientifici per canali tematici satellitari, digitale terrestre e dvBH ed editoria correlata come DVD o WEB.

• Tipo attività: SP

2.2.4.d) Risultati per attività e partner coinvolti

<table>
<thead>
<tr>
<th>Attività</th>
<th>Risultati</th>
<th>Responsabile</th>
<th>Partner Coinvolti</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR 4</td>
<td>4.1 Report</td>
<td>Infobyte</td>
<td>CM Sistemi Sud/Sirfin</td>
</tr>
<tr>
<td></td>
<td>4.2 Report Moduli Sw</td>
<td>Infobyte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3 Report Moduli Sw</td>
<td>Infobyte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4 Report Database multimedia</td>
<td>CM Sistemi Sud</td>
<td>Sirfin</td>
</tr>
<tr>
<td></td>
<td>4.5 Report Moduli Sw e prototipo</td>
<td>Infobyte</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 9 – Risultati, responsabili e partner OR4

2.2.4.e) Input dell’OR4

- Dati del campo sia in modalità on-line che off-line;
- Piani di Intervento;
- Previsioni Degrado;
- Simulazioni Itinerari Turistici;
- Ricostruzioni 3D;
- Previsioni Restauro;
- Simulazioni Degrado;
- Modelli Ontologici Evoluti;
- Base Dati Multimediale.

2.2.4.f) Output dell’OR4

- Progetto della Cabina di Regia;
- Progetto della Sala Visione;
- Applicazioni 3D Immersive;
- Segnali Video Live;
2.2.4 g) Collegamenti tra l’OR4 e gli altri OR del progetto
L’OR4 riceve dall’OR1 i dati del campo sia in modalità on-line che off-line, i piani di intervento dall’OR2, i dati sul degrado dall’OR3, nonché le informazioni del sistema integrato dell’OR5. Sulla base degli input, produce una serie di output Multimediali aggregati su piattaforme multi-canale sia on line che off line.
Inoltre sfruttando alcuni dati in ingresso dagli altri OR, ed in particolare l’OR1 e l’OR2, produce ed invia i comandi verso strumentazione dell’OR1.

2.2.4.h) Riferimenti bibliografici dell’OR4

2.2.5) OR5: Un Sistema Knowledge-based per la Catalogazione e l’Accesso ai Beni dell’archeologia subacquea

2.2.5.a) Descrizione dell’OR5

Scopo dell’obiettivo realizzativo OR5 è quello di ideare e sviluppare, a livello prototipale, modelli e tecniche innovative finalizzate alla realizzazione di un Sistema di Catalogazione del patrimonio sommerso basato sulla conoscenza dell’ambiente marino, del contesto storico e culturale, del repertorio dei beni localizzati e censiti o di cui si suppone l’esistenza in ragione dei dati storici. Il principio alla base della progettazione del sistema informativo vuole la completa separazione dei domini conoscitivi in modo da consentirne l’alimentazione e gestione separata e indipendente da parte dei vari agenti, così come descritto in tabella.

<table>
<thead>
<tr>
<th>Agente</th>
<th>OR</th>
<th>Dominio conoscitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema di ricognizione dei fondali</td>
<td>OR1</td>
<td>Ambiente marino</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reperti localizzati</td>
</tr>
<tr>
<td>Sistema per la gestione di protocolli di tutela</td>
<td>OR2</td>
<td>Beni di cui si suppone l’esistenza in base ai dati storici</td>
</tr>
<tr>
<td></td>
<td>OR3</td>
<td>Beni censiti a patrimonio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piano di conservazione dei reperti</td>
</tr>
<tr>
<td>Sistema per il tracciamento di percorsi storico-culturale</td>
<td>OR2</td>
<td>Spazio storico e culturale nel quale i beni sono immersi</td>
</tr>
<tr>
<td>Sistema per l’applicazione e il tracciamento delle analisi archeometriche di provenienza applicate ai reperti ceramici</td>
<td>OR3</td>
<td>Beni sottoposti ad analisi archeometriche</td>
</tr>
</tbody>
</table>

Tabella 10 – Relazione tra Agenti e Domini conoscitivi

E’ compito del sistema il mantenimento della consistenza complessiva delle relazioni intra e inter-livello durante l’evoluzione indipendente dei diversi domini. Per favorire tale compito, l’impianto architetturale complessivo è articolato su tre livelli (vedere la Figura che segue):

1. il livello di integrazione dei dati, costituito da sorgenti eterogenee esterne (dati strutturati, semi-strutturati e non strutturati – documenti, provenienti dall’esterno; sorgente “interna” relativa ai beni subacquei calabresi costruita nell’ambito dell’OR1; sorgente “interna” relativa ai beni subacquei sottoposti a misure archeometriche costruita nell’ambito dell’OR3), che ha il compito di assicurare una percezione unitaria del repertorio dei beni censiti come un sistema informativo unico, organizzato secondo uno schema concettuale ben identificato in grado di esonerare dal riconoscimento esplicito delle fonti usate;
2. il livello della conoscenza, costituito da un repository (data warehouse) e da un insieme di ontologie costruite su di esso, che ha il compito di assicurare lo spazio ontologico dove convivono i diversi domini conoscitivi. I due livelli sono collegati tramite wrapper, mediator e web service. La gestione della conoscenza avviene attraverso la costituzione di moduli per la rappresentazione e la manipolazione della conoscenza (ontology manager), per il reasoning, per la classificazione documentale, ecc.;

3. il livello applicativo (dei servizi), che ha il compito di dare supporto alle componenti applicative che devono operare sullo spazio ontologico rappresentato per generare percorsi di espressione del patrimonio, per specificare protocolli di tutela e piani di conservazione, per analizzare in modo comparato, sotto il profilo economico, i costi di tutela e i benefici di espressione. Si noti che tale livello applicativo tiene conto dell’esistenza di due categorie di utenza del sistema: l’utente gestore del patrimonio, e il pubblico come potenziale fruttore dell’espressione del patrimonio stesso.

Figura 19 - Architettura del Sistema Knowledge Based

Si noti che:
1. i livelli 1 e 2 rappresentano il back-end dell’applicazione; mentre il livello 3 rappresenta il front-end;
2. lo schema concettuale del sistema integrato al livello 1 deve coincidere con una parte del livello intensionale dell’ontologia del livello 2. Tale schema deve essere utilizzato come modello per disciplinare il processo di integrazione delle fonti informative al livello 1.;
3. l’ontologia rappresenta la matrice storico-culturale nella quale il patrimonio è immerso; in questo senso, deve consentire la valutazione della ricchezza espressiva del patrimonio rappresentato dal sistema di integrazione in una logica di controllo del valore del processo di integrazione dei sistemi informativi di catalogo;
4. il livello applicativo riguarda la definizione dei processi di gestione e valorizzazione del patrimonio censito, nella prospettiva della promozione del territorio, anche con finalità politiche rispetto al turismo culturale; potranno essere sperimentati diversi plug-in applicativi che introducano il trattamento di problematiche di integrazione logistica, disegno di percorsi culturali e valutazione di impatto.

Utenti del sistema
Il sistema è funzionale principalmente a due categorie di utenze:
- l’utente gestore del patrimonio;
- il pubblico come potenziale fruitore dell’espressione del patrimonio stesso.
Per la prima tipologia di utenza il sistema fornisce:
1. dei sistemi di riferimento indipendenti dai dati per l’analisi del patrimonio informativo e la caratterizzazione della sua qualità (completezza, accuratessa, etc) rispetto ai tracciati storico-artistici considerati;
2. dei protocolli di tutela e piani di conservazione, per analizzare in modo comparato, sotto il profilo economico, i costi di tutela e i benefici di espressione.
Per la seconda tipologia di utenza il sistema fornisce:
3. dei tracciati storico-culturali per la interpretazione del patrimonio culturale e artistico esistente nei siti da visitare;
4. dei percorsi di espressione del patrimonio.

La seguente tabella riporta l’elenco delle attività previste nell’OR5.

<table>
<thead>
<tr>
<th>Attività</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.5.1</td>
<td>Definizione dello schema concettuale del catalogo integrato</td>
</tr>
<tr>
<td>A.5.2</td>
<td>Progetto del sistema di integrazione</td>
</tr>
<tr>
<td>A.5.3</td>
<td>Definizione dell’ontologia di riferimento</td>
</tr>
<tr>
<td>A.5.4</td>
<td>Definizione del sistema di accesso a basi documentali</td>
</tr>
<tr>
<td>A.5.5</td>
<td>Sviluppo dell’ambiente di gestione della consistenza inter-livello</td>
</tr>
<tr>
<td>A.5.6</td>
<td>Estensione del modello ontologico al trattamento di informazioni multimediali</td>
</tr>
<tr>
<td>A.5.7</td>
<td>Sistema CAD per la specifica e valutazione di programmi di valorizzazione</td>
</tr>
<tr>
<td>A.5.8</td>
<td>Sistema di supporto al delivery</td>
</tr>
<tr>
<td>A.5.9</td>
<td>Messa a punto del prototipo integrato</td>
</tr>
</tbody>
</table>

Tabella 11 – Elenco attività OR5
2.2.5.b) Stato dell’arte dell’OR5

Rappresentazione della Conoscenza Mediante Ontologie e Basi di Conoscenza

Il continuo progredire delle tecnologie informatiche e l’enorme crescita del World Wide Web che hanno caratterizzato gli ultimi decenni, hanno messo a disposizione dei singoli individui, delle organizzazioni e dei programmi software, un enorme volume di informazioni distribuite ed eterogenee. Se da un lato, il conseguente sviluppo di sistemi basati sulla conoscenza ha portato ad avvertire in maniera sempre più forte la necessità di accesso, di comunicazione e di condivisione di tale conoscenza, dall’altro, la condivisione ed il riutilizzo dei software basati sulla conoscenza è fortemente ostacolato da problemi tecnici legati allo sviluppo di applicazioni e sistemi fortemente eterogenei tra di loro nelle piattaforme hardware, nei linguaggi e protocolli di rete utilizzati. Perché tali sistemi possano operare e comunicare, negoziare e scambiarsi conoscenza, è necessario superare la barriera costituita dall’esistenza di diversi background, paradigmi, linguaggi, tool e metodi di modellizzazione che limitano fortemente l’interoperabilità ed il potenziale riutilizzo e la condivisione di conoscenza. Il problema principale risiede dunque nella coesistenza di diversi bisogni e contesti, per cui possono esserci punti di vista ed assunzioni ampiamente variabili riguardo a cosa essenzialmente è lo stesso soggetto del discorso. Ognuno usa differenti gerghi; ognuno può far riferimento a concetti differenti, sovrapposti e/o non coincidenti. La conseguente perdita di una conoscenza comune porta a problemi di comunicazione tra persone ed organizzazioni, a difficoltà dell’identificazione dei requisiti e quindi nella definizione di una specifica per sistemi IT. In questo scenario è di vitale importanza assicurare la qualità della comunicazione tra agenti umani e artificiali e lo sviluppo di una descrizione esplicita del dominio di interesse, che sia in grado di fornire una formalizzazione della conoscenza comune. Una rappresentazione formale della realtà si basa su una concettualizzazione cioè su una rappresentazione dell’insieme degli oggetti, dei concetti e delle altre entità che si presume esistano in qualche area di interesse e delle relazioni tra loro intercorrenti. Una concettualizzazione è quindi una descrizione astratta e semplificata della realtà che si vuole rappresentare per qualche ragione. Ciascuna base di conoscenza, sistema basato sulla conoscenza o agente che operi a livello di conoscenza è legato a qualche concettualizzazione, sia essa implicita o esplicita. Una specificazione esplicita di una concettualizzazione costituisce un’ontologia. Un’ontologia può dunque giocare il ruolo di terreno semantico necessario alla comunicazione ed alla rappresentazione di conoscenza. Le ontologie rappresentano un potente strumento concettuale per la modellazione della conoscenza. Permettendo l’esplicitazione della concettualizzazione del mondo, garantiscono, infatti, la formalizzazione e l’interscambio della conoscenza. Il termine ontologia proviene dall’ambito filosofico in cui viene utilizzato per indicare una descrizione sistematica dell’esistenza. Nel contesto dei sistemi di Intelligenza Artificiale il termine ontologia è stato usato con differenti significati. Una discussione di alcuni dei significati attribuiti a questo termine è stata affrontata da Gruber.
Secondo la definizione iniziale proposta da Gruber un’ontologia è: una specificazione esplicita e formale di una concettualizzazione condivisa dove:

- esplicita significa che il tipo di concetti usati ed i vincoli sul loro utilizzo sono esplicitamente definiti;
- formale si riferisce al fatto che un’ontologia dovrebbe essere machine-readable (leggibile da una macchina);
- condivisa riflette il fatto che la conoscenza rappresentata in un’ontologia debba catturare la conoscenza consensuale, cioè un tipo di conoscenza non privata per qualche individuo, ma accettata da un gruppo;
- concettualizzazione si riferisce ad un modello astratto di qualche fenomeno nel mondo costituito dall’identificazione dei concetti rilevanti di quel fenomeno.

Una definizione più informale del termine ontologia è stata fornita da Maedche, secondo cui un’ontologia ’è: un vocabolario di termini e qualche specifica sul loro significato. Secondo questa definizione, un’ontologia specifica un vocabolario comune tra sistemi differenti ed in quanto tale consiste in un insieme di termini e di vincoli imposti sul modo in cui questi termini possono essere combinati. Sono tali vincoli a specificare la semantica dei termini restringendo il numero di possibili interpretazioni del termine stesso. Un’ontologia può essere definita a partire dai termini rappresentativi del dominio dell’applicazione che bisogna descrivere. Quando la conoscenza di un dominio viene rappresentata in un formalismo dichiarativo, l’insieme degli oggetti che possono essere rappresentati è chiamato universo del discorso. L’insieme di questi oggetti e le relazioni che li legano sono riflessi nel vocabolario con cui un programma basato sulla conoscenza rappresenta la conoscenza stessa. In tale ontologia, le definizioni associano nomi di entità appartenenti all’universo del discorso (classi, relazioni, funzioni e altri oggetti) ad un testo che descrive ciò che i nomi significano, e assiomi formali che vincolano l’interpretazione e l’utilizzo ben formato di questi termini. Formalmente, un’ontologia è la dichiarazione di una teoria logica.

In molti campi di ricerca, quali il Knowledge Management, l’integrazione intelligente di informazione, l’e-commerce, i sistemi di informazione cooperativa, l’integrazione di basi di dati, si è concordi nel dichiarare che le ontologie giocheranno un ruolo primario nel prossimo futuro e, nonostante la varietà del tipo di interesse rivolto alle ontologie ed al differente utilizzo che ne viene fatto, è interesse comune definire e sviluppare ontologie con determinati standard di qualità.

Negli anni passati, diversi sono stati i linguaggi usati per implementare ontologie. Ontolingua è il più rappresentativo di essi, ed è considerato uno standard nella comunità delle ontologie. Altri linguaggi utilizzati per la specifica di ontologie sono: LOOM, CycL, OCML e FLogic. Inoltre, soprattutto in ambito di ricerca, hanno ricevuto grande attenzione i linguaggi SHOE[49], XOL[43], OIL[40], DAML+OIL [HP01, HPH02] e OWL [F02] che sta imponendosi come il nuovo standard trai linguaggi per la rappresentazione di ontologie. I paradigmi della Knowledge Representation che stanno alla base di questi linguaggi sono i più diversi: frame-based, Logica Descrittiva, Calcolo dei Predicati del Primo e Secondo Ordine, formalismi object-oriented, etc. Recentemente, come conseguenza alla definizione
di nuovi linguaggi standard per il Web e l’interscambio dei dati, quali XML e RDF, sono emersi altri linguaggi per la specifica di ontologie basati su XML:

Una Base di Conoscenza [Ullm89, ScTh89, LiSt98, FrFF99] è un qualsiasi sistema che consenta di gestire in modo automatico la conoscenza che un agente ha relativamente ad un certo dominio. Si tratta di un concetto analogo a quello di una base di dati, tuttavia il potere espressivo è notevolmente più elevato, anche grazie alla possibile presenza di ontologie, in quanto la conoscenza è formalizzata in termini di fatti e di regole. Pertanto l’interrogazione di una base di conoscenza è a tutti gli effetti assimilabile all’applicazione di un meccanismo di ragionamento automatico basato sulle opportune tecniche di inferenza. Di conseguenza l’alimentazione di una base di conoscenza può essere condotta sia mediante l’inserimento di semplici fatti, sia mediante l’induzione di regole con tecniche di Apprendimento Automatico.

In questo contesto un’Ontologia [FNHa97, Simo87, Guar95, UsGr96, vHSW97, BeFG98, ChJB99] può essere definita come il modello per una determinata base di conoscenza, in quanto definisce i concetti in base al quale sono espressi i fatti e formulate le regole in essa contenuti. Siccome un’ontologia può, a sua volta, definire delle opportune regole sui propri concetti è invalso l’uso di definire come ontologia una base di conoscenza basata su un certo dominio, opportunamente estendibile in funzione delle esigenze applicative (Upper Level Ontology).
La necessità di disporre di basi di conoscenza generali, che possano integrare altre basi di conoscenza, ha portato a:
1. la definizione di formalismi aperti per l’interscambio delle ontologie [Grub91, Grub93];
2. la costruzione di ontologie di base riutilizzabili.
I due aspetti sono tra loro intimamente connessi, infatti esistono diverse iniziative che li affrontano contemporaneamente. Tra queste si annovera Cyc [HwSc93, Davi90, Cyc], condotta in ambito industriale, che ha condotto alla realizzazione di un’ontologia di utilizzo generale espressa in un linguaggio per Logiche dei Predicati del Primo Ordine (CycL).
Tali elementi consentono sia di realizzare sistemi basati sul ragionamento di senso comune, in quanto integrano una base di fatti e regole d’utilizzo corrente, che di rendere l’implementazione di applicazioni intelligenti più veloci.
La disponibilità di formalismi standard per la rappresentazione della conoscenza e di ontologie di livello superiore ha sollevato il problema della riconciliazione automatica tra diverse ontologie relative al medesimo dominio [UCHW+98, FNMu00, MFRW00].
Oltre alla creazione di ontologie di utilizzo generale, esistono proposte specifiche per domini applicativi più ristretti, come ad esempio le informazioni spaziali [SVSV99] e temporali [vanB83, MoSt88].

Verifica formale di requisiti di consistenza, efficacia e correttezza

La verifica formale dei requisiti di efficacia dipende ampiamente dal linguaggio di specifica di tali requisiti [Maurer-2004]. Il problema di tale verifica può essere inquadrato in un contesto nel quale interopero due agenti – utente e sistema – con interessi anche contrastanti tra loro. Il protocollo di interazione deve essere specificato in modo completo e preciso allo scopo di definire le tipologie di informazioni che possono essere estratte dal sistema informativo e quelle che, invece, il sistema informativo non può produrre. Assume rilevanza qui la ricerca sul cosiddetto view-based query processing e cioè il processo di risposta alle query in un sistema informativo che offra all’utente solo delle viste parziali sulla base di dati [Alon – 2001]. Nel contesto del mascheramento delle informazioni, questo problema è ulteriormente complicato dal fatto che il processo deduttivo deve assicurare la produzione di informazioni dalle viste sotto il vincolo di inibire la scoperta di quelle informazioni che, secondo il protocollo di mascheramento, devono essere protette. Emerge la nozione, del tutto nuova rispetto allo stato dell’arte, di “vista negativa” intesa come la specifica intensionale di un concetto la cui estensione non deve essere conosciuta dall’utente.

Infine, l’utilizzo di un’ontologia di riferimento pone il problema di armonizzare il linguaggio di specifica dei requisiti di efficacia con il linguaggio di specifica dell’ontologia stessa. Si determina, conseguentemente, la necessità di armonizzare le procedure di verifica formale dell’efficacia del mascheramento con le procedure di ragionamento automatico sull’ontologia.

La verifica formale dei requisiti di correttezza del mascheramento è ancora legata alla possibilità di effettuare ragionamenti complessi sia sulla specifica del mascheramento sia sull’ontologia di riferimento. In questo caso, deve assicurata una corrispondenza tra le deduzioni effettuabili a valle del mascheramento rispetto a quelle sul sistema informativo di origine. Tale corrispondenza assume la forma di un isomorfismo tra deduzioni, problema del tutto nuovo almeno nell’ambito dei sistemi di ragionamento su ontologie. Si
tratta quindi di adattare gli apparati deduttivi di ragionamento sviluppati negli anni recenti al nuovo scenario [Calvanese 2001].

Integrazione di Sorgenti Informative

Il filone dell’Integrazione delle Sorgenti Informative Eterogenee è uno dei più proficui settori di ricerca nel campo dell’Informatica, nel quale sono stati conseguiti nel corso degli anni numerosi risultati d’interesse scientifico. Parimenti, il mondo industriale dimostra una notevole attenzione a queste problematiche ed in tempi recenti l’applicazione di queste tecnologie ha acquisito una sempre maggiore importanza economica.

Il notevole interesse rivolto verso questi temi di ricerca è dovuto, sostanzialmente, alla costante necessità in campo applicativo di metodologie e tecnologie per l’integrazione del patrimonio informativo gestito dai vari sistemi. L’avvento della ontologie ha portato nuova linfa a questo settore. Le ontologie, infatti, grazie al loro potere espressivo, possono descrivere le sorgenti informative da integrare ed il risultato finale dell’integrazione, e guidare il processo realizzativo.

Si può constatare come l’evoluzione dei Sistemi Informativi, soprattutto quelli di dimensione medio grande, si articoli tipicamente in diverse fasi. In una prima fase si consegue, sostanzialmente, la realizzazione di sistemi indipendenti per aree funzionali, con una forte propensione al sostegno delle attività operative dell’organizzazione stessa. Successivamente, a seguito della diffusione delle tecnologie per l’informazione, della necessità di un supporto conoscitivo adeguato all’attività decisionale e dell’acquisizione della consapevolezza del valore insito nelle informazioni gestite dall’organizzazione (definito, appunto, patrimonio informativo), è nata l’esigenza di fornire una visione integrata, uniforme e consistente delle informazioni medesime.

Nel contempo, tuttavia, l’evoluzione dei sistemi informatici operazionali e la loro suddivisione per unità organizzative impedisce, generalmente, un approccio all’integrazione basato su una riprogettazione complessiva del sistema informativo dell’organizzazione. Pertanto le tecniche per l’integrazione dei dati cercano di fornire degli strumenti concettuali che consentano sia di offrire una visione unificata del patrimonio informativo con interventi minimi sulle sorgenti che gestiscono effettivamente le informazioni (approccio non invasivo) che di mantenere l’indipendenza delle sorgenti informative.

Tra i principali risultati della ricerca in questo settore vi è la definizione dei paradigmi di base nell’approccio ai problemi d’integrazione. Tali paradigmi si basano su una serie di concetti fondamentali per la formalizzazione della problematica dell’integrazione. Un sistema di Integrazione Dati è un sistema che consente di accedere in modo unificato e trasparente per l’utente ad un insieme di sorgenti dati eterogenee. Partendo da questa definizione è possibile distinguere due concetti fondamentali:

1. Modelli Dati delle sorgenti (Sources Data Model);
2. Modello Dati integrato (Global Data Model).

Il sistema consente di formulare interrogazioni rispetto al modello dati integrato mascherando completamente l’organizzazione delle sorgenti sottostanti. Per offrire questa funzionalità, tuttavia, è necessario formalizzare opportunamente il rapporto intercorrente
tra i due modelli di rappresentazione. A tal proposito sono stati individuati due paradigmi fondamentali, noti in letteratura come Global as view (GAV) e Local as view (LAV) [Levy00, Len02].

Il paradigma GAV prevede di rappresentare i dati contenuti nel modello integrato in funzione dei dati gestiti dalle singole sorgenti. Si tratta dell’approccio più immediato ed implementato dalla maggior parte degli strumenti d’integrazione. La sua principale limitazione è la sensibilità ad eventuali variazioni nelle sorgenti (modifica della struttura di una sorgente o aggiunta di una nuova sorgente), in quanto il modello integrato è sostanzialmente data driven.

Il paradigma LAV, invece, adotta un approccio complementare nel quale sono le sorgenti ad essere descritte in funzione del modello integrato. Pertanto è possibile garantire un maggior grado di isolamento rispetto ad eventuali modifiche delle sorgenti alimentanti, in quanto il sistema è sostanzialmente query driven. Attualmente non esistono applicazioni industriali basate su questo modello, in quanto vi sono, ancora, un insieme di problematiche scientifiche irrisolte; sono stati tuttavia conseguiti in tempi recenti alcuni importanti risultati su particolari tipologie di problemi [AfGK99, BeLR97, CoNS99, GrMe99, Gryz98, CDLN+99].

Tradizionalmente le prime attività di integrazione dati sono state rivolte verso sorgenti dati fortemente strutturate (ad es.: basi di dati relazionali). Tuttavia la diffusione di nuove tecnologie per la gestione di dati semi strutturati (XML), di tecniche di estrazione di conoscenza da sorgenti dati parzialmente strutturate o del tutto non strutturate (Text Mining, Web Content e Web Structure Mining) [KoBl00], nonché la disponibilità di un vastissimo patrimonio informativo in forma non strutturata, qual’è la rete Internet ed il particolare il WWW, hanno suscitato l’esigenza di tecnologie e metodologie per integrare anche queste tipologie di sorgenti [BoBr97, GaSt99, Abit97, AsKn97]. Nelle applicazioni di integrazione dati è sovente necessario gestire opportunamente il problema dell’incompletezza dell’informazione. Infatti, le informazioni contenute all’interno delle sorgenti possono essere, e spesso risultano esserlo, incomplete. La situazione tipica è di sorgenti appartenenti a fonti distinte che gestiscono concetti comuni, ma che non coincidono a livello di istanze. Per poter accrescere la capacità del sistema di integrazione anche in presenza di informazioni incomplete è possibile sfruttare la conoscenza associata ai vincoli del modello dati integrato. In particolare, i vincoli trattati sono quelli di chiave primaria e di chiave esterna. Questi ultimi possono essere estremamente utili per risolvere il problema dell’incompletezza dei dati, dal momento che esprimono delle relazioni di contenimento insiemistico tra diversi concetti, ovvero tra diverse sorgenti. Ulteriori estensioni prevedono l’impiego della conoscenza associata ad altre famiglie di vincoli, come, ad esempio, le dipendenze funzionali.

Grande importanza nello sviluppo dei sistemi che integrano risorse informative distribuite nella rete hanno avuto le tecnologie per l’ottimizzazione di reti complesse, e le tecnologie middleware introdotte negli ultimi anni. Tuttavia, entrambe le tecnologie offrono servizi “indipendenti” dall’applicazione, mentre le problematiche che ancora presentano rilevanti difficoltà di approccio sono quelle legate alla semantica delle applicazioni stesse e all’efficacia dell’uso delle risorse e dei servizi da esse offerti. In altre parole, se i metodi di ottimizzazione di rete e il middleware forniscono una base consolidata per l’infrastruttura
tecnolegica, è necessario concepire nuove tecniche e strumenti per migliorare l'efficacia nella progettazione e nelle prestazioni dei sistemi per l'integrazione di risorse informative. Gran parte dell'attività di ricerca in questo settore si è concentrata sul problema dell'integrazione di dati provenienti da sorgenti eterogenee strutturate o semi-strutturate di dati, al fine di realizzare dei sistemi di accesso uniforme agli stessi. In particolare, numerosi contributi sono stati prodotti relativamente a tecniche, metodi e sistemi per l'integrazione e l'interrogazione di sistemi informativi eterogenei. Più di recente, la significativa crescita del numero di sorgenti di dati semi-strutturati (documenti, testi, ecc.) ha indotto un forte interesse anche verso le problematiche relative alla progettazione di metodi e tecniche in grado di realizzare l'integrazione di questo nuovo tipo di sorgenti informative.

Riguardo ai metodi di rappresentazione delle sorgenti, sono stati prodotti contributi relativamente a modelli di dati semi-strutturati [Bergamaschi99, Calvanese99b, Calvanese99c], tecniche di analisi e integrazione di schemi concettuali e viste globali di basi di dati in sistemi distribuiti, e a linguaggi per l'estrazione di dati da Web [Castano 98, Castano 99, Montesi 98].

L'estrazione, l'analisi e la specifica di proprietà inter-schema, quali sinonimie, omonimie, inclusioni, conflitti di tipo ecc., è un ulteriore aspetto critico della integrazione. Recentemente sono state proposte diverse tecniche semi-automatiche per l'estrazione di sinonimie, omonimie ed inclusioni da schemi di basi di dati [PSU99] e l'individuazione di conflitti di tipo in schemi di basi di dati [PSU98]. Infine, in [PTU00] vengono descritti degli algoritmi semi-automatici per l'integrazione e l'astrazione di schemi di basi di dati. Fornire una visione virtuale integrata di dati provenienti da sorgenti eterogenee è in genere funzionale alla possibilità di porre interrogazioni in modo trasparente rispetto alle sorgenti utilizzate e di conseguenza, alla possibilità di realizzare la condivisione di servizi informativi. Alcuni progetti descritti in letteratura in tale contesto propongono l'uso di logiche descrittive quale formalismo interno comune di rappresentazione della conoscenza intensionale delle sorgenti e delle interrogazioni al fine di utilizzare le tecniche di inferenza di queste sia per costruire la visione integrata che per ottimizzare l'interrogazione dei dati. Sistemi sviluppati in questo ambito sono SIMS, Information Maninfold, GARLIC, Infomaster, DWQ.

La complessita’ della riconciliazione e’ dovuta a diversi problemi legati alla eterogeneità delle sorgenti, quali differenze nella rappresentazione di uno stesso oggetto, possibili errori nella codifica di proprietà di oggetti, possibili discrepanze nelle proprietà associate agli oggetti nelle varie sorgenti. Solo recentemente il problema della riconciliazione e’ stato...
affrontato con metodi formali e scientifici [CDLN+99, GFSS00, Len02]. Esistono, a questo specifico livello, alcune problematiche che vanno comunque affrontate e, tra queste, citiamo quella della specifica di vincoli di accesso alle sorgenti informative, che spesso sussistono, e di cui le tecniche di integrazione di dati dovrebbero tenere conto. Al fine di risolvere questi problemi in modo flessibile nelle diverse applicazioni, la definizione dei vincoli sulla riconciliazione e sulla gestione di inconsistenze è essenziale, perché consente di porre condizioni al contorno all’interno delle quali sviluppare le opportune tecniche.

Classificazione Documentale

La Classificazione Documentale (CD) è il processo di assegnazione, sulla base del suo contenuto, di un documento ad una o più categorie predefinite.

Il processo di CD è caratterizzato da due fasi principali: Document Preprocessing e Classificazione (propriamente detta):

− Document Pre-Processing. In questa fase ogni documento viene analizzato al fine di estrarre le features che lo caratterizzano. In questo modo, i documenti memorizzati nel repository assumono una forma “strutturata” dipendente dalla natura delle features estratte. La tipologia delle features dipende, generalmente, da due fattori principali: gli algoritmi di classificazione che si intende utilizzare per l’analisi, nonché la tipologia e la forma della conoscenza che s’intende estrarre. Gli estrattori di features si caratterizzano in ragione delle tecnologie di base che utilizzano, ad esempio, reti neurali, espressioni regolari, analisi statistiche, ecc., e dalla precisione e completezza che possono garantire al processo di estrazione. Contrariamente a quanto accade col KDD, nella CD la fase di pre-processing assume importanza fondamentale.

Accesso Adattativo Multimodale/Multicanale

Il problema dell’accesso a servizi informativi con sistemi di tipo multimodale e multicanale solo di recente, con l’affermarsi delle nuove tecnologie di comunicazione di tipo mobile e personale, ha ricevuto interesse in letteratura. L’avvento di Internet ha reso possibile la fruizione remota di servizi informativi con modalità precedentemente inimmaginabili. In ambienti in cui la disponibilità di risorse di trasmissione e ricezione è variabile, è fondamentale che il livello di qualità di servizio sia
configurabile, predicibile e manutenibile su tutto il sistema [HPN00, SHNK00]. I tradizionali strumenti di supporto alla fruizione di informazioni da sorgenti informative lavorano, generalmente, utilizzando tecniche indipendenti dall’utente; in particolare, la modalità di interazione con il sistema e di presentazione dei dati è sostanzialmente indipendente dallo specifico utente che ha richiesto il servizio. Un miglioramento sostanziale nella qualità di fruizione dell’informazione potrebbe essere ottenuta se il contenuto informativo di un servizio ed il modo di interazione e presentazione dei dati ad esso relativo venissero automaticamente “mediati” attraverso profili costruiti sulla base delle caratteristiche dell’utente o dei sistemi e terminali che questi utilizza per fruire del servizio stesso [CP00, CCP02]. Ciò consentirebbe di ottenere informazioni di contenuto e formato appropriato alle reali esigenze espresse dall’utente con la sua richiesta. In questo quadro, come già evidenziato nell’illustrazione dei contenuti degli obiettivi realizzativi, è necessario sviluppare strumenti che consentano di rappresentare appropriatamente i contenuti semantici dei servizi informativi disponibili da una parte, e di descrivere le caratteristiche dell’utente che voglia accedere a tali servizi e degli associati dispositivi di accesso, dall’altra.

L’accesso multimodale e multicanale a servizi informativi implica la necessità di garantire la fruizione di informazioni da parte dell’utente a fronte di disponibilità variabile di banda dati e/o di banda utente. Questa problematica è di particolare rilievo laddove gli utenti utilizziino, ad esempio, terminali/sistemi mobili per l’accesso alle sorgenti informative, quali i sistemi di tipo palmare o i più recenti terminali per la telefonia mobile. In ogni caso, nell’erogazione di servizi informativi verso terminali a banda ricettiva limitata, è necessaria la disponibilità di tecniche per la compressione delle informazioni trasmesse. Ciò, in generale, non può avvenire senza alcuna perdita di informazione ed il problema è quello di limitare questa a componenti informative non fondamentali per l’utente.

Quest’approccio è quindi basato su compressione di tipo “lossy” (cioè con perdita di informazione) applicata sulle informazioni originarie per cui queste non possono essere ricostruiti esattamente. Tuttavia la compressione fornisce di essi una visione sintetica significativa ed un effettiva base per poter rispondere ad alcuni tipi di esigenze informative in modo “approssimato” con un grado accettabile di errore. Una tecnica recente e, cioè, gli istogrammi basati sulle wavelet, è stata già applicata a questo contesto. Un istogramma accumula il contenuto di una relazione R rispetto ad un certo attributo X in alcuni bucket che corrispondono ad una partizione del dominio dell’attributo X in opportuni intervalli. Ogni bucket memorizza il numero di occorrenze delle tuple di R aventi valori per X all’interno del corrispondente intervallo. Se consideriamo più attributi, otteniamo un istogramma multidimensionale. I principali problemi da affrontare per fornire buone stime utilizzando gli istogrammi sono: (a) definire gli estremi dei bucket in modo che la stima diventi efficace (per esempio evitando che vi siano grandi dislivelli di frequenza all’interno dei bucket); (b) effettuare una stima della distribuzione delle frequenze all’interno del bucket sfruttando completamente le informazioni che vi sono nei dati aggregati. Il primo problema è stato studiato per molti anni e sono molte sono le proposte in merito. Il secondo problema ha ricevuto poca attenzione. Le proposte più significative sono molto semplici: la continuous value assumption, corrispondente ad una
stima fatta mediante interpolazione lineare sull’intero dominio del bucket senza usare l’informazione sul numero di valori dell’attributo che appaiono all’interno del bucket, e la “uniform spread assumption”, in cui si suppone che i valori non nulli siano posizionati in modo equidistante all’interno del bucket e che la loro somma sia egualmente distribuita tra essi. Lavori recenti [BV99, BLRU02] hanno mostrato che la qualità dei risultati ottenuti dipendono essenzialmente dalla disponibilità di una buona soluzione del secondo dei problemi sopra menzionati.

Gestione delle Informazioni sui Beni Culturali

Le Tecnologie dell’Informazione hanno avuto un ruolo estremamente rilevante nell’evoluzione della Scienza Archivistica [Delm01, Dura01] nei tempi più o meno recenti. Diverse organizzazioni, nazionali ed internazionali, pubbliche e private, sono state coinvolte in svariati progetti di costruzione di sorgenti informative che consentissero di rappresentare nel modo più completo possibile un determinato patrimonio di beni culturali. Da queste esperienze è nata l’esigenza di stabilire degli standard precisi per la rappresentazione e la condivisione di questa tipologia di informazioni. In particolare, si è riscontrato che il problema cruciale è costituito non dall’archiviazione delle informazioni, ma dall’accesso e la fruizione di queste ultime [MeHa01].

Organizzazioni e Progetti Inerenti il Settore dei Beni Culturali

Dopo aver introdotto le principali tecnologie utilizzate per l’informatizzazione del patrimonio culturale, è opportuno effettuare una rassegna sulle iniziative intraprese dalle più importanti organizzazioni che si occupano di tale attività a livello nazionale ed internazionale e sulle loro proposte.

ICCD

La catalogazione del patrimonio culturale italiano è affidata all’ICCD o Istituto Centrale per il Catalogo e la Documentazione [ICCD], il quale cura l’elaborazione delle metodologie di catalogazione ed i vari aspetti legati alla informatizzazione dei cataloghi; allo scopo di realizzare un unico sistema informativo del catalogo dei beni culturali l’ICCD ha nel corso degli anni definito standard di catalogazione in forma strutturata per le diverse tipologie di beni culturali (ad esempio la “scheda A” per gli edifici o la “scheda RA” per i reperti archeologici) per sostituire le vecchie schede a testo libero utilizzate dalle varie soprintendenze ed ha realizzato diversi programmi informatici di supporto all’utilizzazione di tali standard, come ad esempio “DESC” per l’immissione controllata dei dati nelle schede di catalogazione, “Mercurio” per la verifica di validità di tali schede ed “Apollo” per la loro stampa. Risulta attualmente in corso il progetto denominato Sistema Informativo Generale del Catalogo, che consenta di memorizzare in un’unica base di dati il patrimonio informativo dei vari cataloghi, realizzando in tal modo un Data Warehouse accessibile per consultazioni OLAP mediante un’interfaccia di tipo Web. Il
sistema in questione utilizza estensivamente il linguaggio XML a partire dalla redazione delle schede da parte dei soggetti preposti alla catalogazione fino alla visualizzazione dei risultati delle ricerche effettuate sul Data Warehouse.

ENCODED ARCHIVAL DESCRIPTION

L’Encoded Archival Description o EAD [EAD] è un modello per la compilazione di inventari, indici e registri di documenti manoscritti, prodotto da una ricerca promossa dalla biblioteca dell’Università di Berkeley che ha coinvolto, in una fase successiva, anche il Network Development & MARC Standards Office della Biblioteca del Congresso. Il modello è definito come una Document Type Definition in linguaggio SGML ed è compatibile con le specifiche XML. Nel corso degli ultimi anni EAD sta gradualmente prendendo il posto del più tradizionale formato MARC, molto utilizzato negli archivi nord americani ma poco diffuso a livello internazionale.

MCN/CIMI

ICOM/CIDOC

L’ICOM o International Council Of Museum [ICOM] è la più importante organizzazione internazionale che si occupi delle problematiche dell’ambito museale e della conservazione dei beni culturali. Si tratta di una organizzazione non governativa creata nel 1946 e strettamente legata all’UNESCO [UNESCO], in collaborazione con la quale gestisce il più grande centro di documentazione di ambito museale, detto appunto UNESCO-ICOM Information Centre.

Il CIDOC o International Committee for Documentation [CIDOC] è uno dei comitati dell’ICOM e si occupa di problemi legati alla diffusione e allo scambio di informazioni museali e in particolare dello sviluppo e della affermazione di standard internazionali che favoriscano lo scambio di tali informazioni. Tra i risultati del CIDOC è sicuramente opportuno citare, oltre a linee guida per la classificazione di oggetti museali [GrNP95], il CRM o Conceptual Reference Model [CRM], un modello basato su una rappresentazione orientata agli oggetti che descrive un’ontologia dei beni culturali con la quale è possibile descrivere in maniera formale i concetti e le relazioni tra concetti rilevanti per la documentazione di tale tipologia di beni, come, ad esempio, manufatti, periodi temporali, documenti, persone e luoghi [CRMOO01, CRMSD01, CrDo98]. Il CRM è stato progettato in modo da essere facilmente estendibile e adattabile sia a contesti specifici differenti sia a diverse tecnologie [Doer01b]. Ad esempio sono stati proposti mapping specifici per l’Encoded Archival Description [ThDo01], il Dublin Core [Doer00] e l’OpenGIS [Doer01a].
2.2.5.c) Attività dell’OR5

A.5.1 – Definizione dello schema concettuale del catalogo integrato

- **Descrizione**

Questa attività ha per obiettivo la definizione di uno standard interno per la caratterizzazione concettuale di un sistema informativo di catalogo integrato, in grado di censire i beni delle diverse tipologie (non necessariamente ubicati nel fondo del mare o provenienti dal fondo del mare) e il luogo della loro collocazione fisica. Il progetto dello schema concettuale terrà conto:
 - degli standard emessi a livello nazionale ed europeo;
 - di un repertorio di sistemi informativi di catalogo censiti a livello nazionale e regionale;
 - di un repertorio di sistemi informativi di beni archeologici subacquei a livello mondiale;
 - dell’output previsto dall’OR 1 delle attività di ricognizione dei fondali.

L’attività è di ricerca industriale e prevede trasferimenti scientifici sulle seguenti tematiche:
 - rappresentazione dello spazio sommerso ai fini della catalogazione dei beni in esso ubicati.

- **Tipo attività: RI**

A.5.2 – Progetto del sistema di integrazione

- **Descrizione**

Tale attività ha per obiettivo la realizzazione prototipale di un sistema di integrazione di sistemi informativi di catalogo governato dallo schema identificato mediante l’attività A.5.1 (schema integrato).

Il sistema di integrazione ha lo scopo di rendere accessibili diverse fonti informative esonerando dalla considerazione delle modalità specifiche per accedere alle informazioni in esse raccolte. I requisiti fondamentali sono:

1. la stabilità dello schema integrato, il quale deve essere riconosciuto al livello della conoscenza come parte della componente intensionale dell’ontologia;
2. il carattere non autoritativo di tale schema; la sua progettazione non implica alcuna restrizione da parte delle fonti e delle organizzazioni che le gestiscono.

Per questi motivi, sarà adottata una tecnologia di tipo local-as-view per l’integrazione delle sorgenti la quale prevederà che lo schema di ognuna di queste sia specificato al
sistema di integrazione facendo uso del suo schema integrato. Si noti che in questo modo, quest’ultimo rimarrà stabile nel tempo e non genererà restrizioni. L’attività è di sviluppo precompetitivo in quanto farà uso di risultati di ricerca applicata ottenuti dal soggetto esecutore.

- **Tipo attività: SP**

A.5.3 – Definizione dell’ontologia di riferimento

- **Descrizione**

 Tale attività prevede la progettazione dell’ontologia di riferimento per la matrice storico-culturale nella quale il patrimonio è immerso. In particolare, dovranno essere definiti:

 1. Il dominio di interesse dell’ontologia, compatibilmente con i risultati attesi negli altri obiettivi realizzativi. Tale dominio comprenderà:
 a. Una caratterizzazione dello spazio-tempo;
 b. La matrice di collocazione storica e artistica dei beni con le sue correlazioni allo spazio-tempo (i percorsi storico-artistici saranno correlati a tale sotto-dominio);
 c. Il patrimonio con i suoi luoghi di fruizione (qui il livello intensionale della ontologia deve corrispondere allo schema di cui all’attività A.5.1).

 2. le categorie di rappresentazione dell’ontologia, con particolare attenzione agli obiettivi di modellazione degli aspetti dinamici della realtà (la storia è una sequenza di eventi); l’obiettivo è convergere verso il miglior bilancio tra espressività e costi in termini di risorse di calcolo necessarie alle forme di ragionamento automatico da implementare sull’ontologia;

 3. la componente intensionale dell’ontologia, ovvero le istanze delle categorie di cui al 2 che meglio permettono la rappresentazione dei fenomeni storici e artistici da includere nella matrice.

L’attività è di ricerca industriale e prevede trasferimenti scientifici sulle seguenti tematiche:
- categorie di rappresentazione degli aspetti dinamici della realtà;
- semantica delle modalità introdotte;
- identificazione delle tecniche di ragionamento automatico da applicare;
- bilanciamento tra potenza espressiva e costi di calcolo;
- progetto di algoritmi per il ragionamento automatico.

- **Tipo attività: RI**

A.5.4 – Definizione del sistema di accesso a basi documentali
• **Descrizione**

Tale attività ha lo scopo di definire una metodologia e degli strumenti per la classificazione semi-automatizza dei documenti memorizzati in una base documentale in modo indotto dalla ontologia di riferimento. La metodologia prevede, in prima approssimazione:

− la specifica, su base ontologica, di opportuni tipi-descrittori di documento (eventualmente posti in una gerarchia di generalizzazione coerente con la tassonomia dei documenti);
− la specifica, su base ontologica, delle regole di classificazione;
− la generazione (anche supportata da strumenti di analisi linguistica) dei descrittori dei singoli documenti.

Oggetto dell’attività è lo sviluppo dei modelli per i tipi-descrittori, le regole e le interrogazioni sulla base documentale e di due prototipi:

− il prototipo di sistema di gestione della base documentale;
− il prototipo di sistema di accesso alla base documentale.

L’attività è di ricerca industriale e prevede trasferimenti scientifici sulle seguenti tematiche:

− definizione dei modelli per la catalogazione dei documenti su base ontologica;
− definizione delle tecniche di classificazione (semi)automatica della base documentale.

• **Tipo attività: RI**

A.5.5 – Sviluppo dell’ambiente di gestione della consistenza inter-livello

• **Descrizione**

Oggetto di tale attività è un ambiente che permette di amministrare le inter-relazioni tra il sistema informativo di catalogo integrato (livello (I)) e la base di conoscenza ontologica (livello (K)). Tale ambiente deve consentire il mantenimento della coerenza tra il Sistema informativo di catalogo integrato, che dipende dai sistemi informativi di catalogo utilizzati, volta per volta, come fonte e l’ontologia di riferimento, mantenendo i due livelli separati e distinti (anche con riferimento alla estensione). Dovranno essere garantite tre funzionalità di base:

− la capacità di ricercare (mediante la generazione di interrogazioni sul sistema integrato) gli oggetti dell’ontologia nell’ambito del Sistema di catalogo integrato per verificare la presenza tra i beni censiti; tale capacità potrebbe comportare l’uso di euristiche sui domini semantici utilizzati per la descrizione dei beni catalogati;
C I CULTURA E INNOVAZIONE S.C.a R.L.

− la capacità di arricchire l’ontologia con oggetti che fanno riferimento a beni catalogati in modo da consentirne lo sviluppo nelle modalità suggerite dal patrimonio disponibile;
− la capacità di assicurare la coerenza estensionale del sistema attraverso l’utilizzo di regole per stabilire quando diverse informazioni provenienti dai sistemi di catalogo devono essere ricondotte allo stesso oggetto della ontologia.

L’attività è di ricerca industriale e prevede trasferimenti scientifici sulle seguenti tematiche:
− sistemi di integrazione estensionale basati su bisimulazione;
− tecniche di cleaning di singoli domini semantici;
− generazione automatica di interrogazioni sullo schema integrato del livello (I).

• **Tipo attività: RI**

A.5.6 – Estensione del modello ontologico al trattamento di informazioni multimediali

• **Descrizione**

Oggetto di tale attività è l’estensione del modello ontologico alla rappresentazione di oggetti multimediali in modo da consentire, anche nell’ambito degli OR 2 e 4, l’uso coerente ed integrato di risorse multimediali in un’ontologia.

Il requisito di base è che tutte le risorse che rappresentano un bene (facendo riferimento a diversi media e a diversi punti di osservazione) debbano poter essere associate ad un unico oggetto dell’ontologia che corrisponde al bene rappresentato in modo tale che tutte le operazioni di manipolazione di quell’oggetto possano essere definite sull’ontologia e successivamente riformulate sulle rappresentazioni in modo conforme al media utilizzato e al punto di osservazione.

L’attività è di ricerca industriale e prevede trasferimenti scientifici sulle seguenti tematiche:
− specifica dei sistemi di riferimento sulle diverse tipologie di oggetti dell’ontologia;
− generalizzazione del concetto di concatenazione ad un sistema di riferimento usato in architettura.

• **Tipo attività: RI**

A.5.7 – Sistema CAD per la specifica e valutazione di programmi di valorizzazione

• **Descrizione**
Tale attività ha per oggetto la risorsa applicativa dell’ontologia dedicata all’utente gestore del patrimonio: un sistema CAD per la specifica di itinerari culturali. Esso opera sull’ontologia di riferimento e comprende:

- Una componente ontologica specifica le cui categorie non riguardano il patrimonio e la sua matrice ma la struttura intesa del processo di espressione del patrimonio stesso (ad esempio: una relazione di propedeuticità nella espressione di due beni). Si noti che tali categorie potrebbero essere derivate in base ad assiomi dell’ontologia sottostante.
- Una componente di analisi logistica, che caratterizza l’area di espressione di una porzione del patrimonio e fornisce supporto nello stabilire i costi di allestimento di un eventuale processo di fruizione come pure i costi diretti di fruizione che potrebbero gravare sul fruitore (esempio: lo spostamento da un luogo ad un altro).
- Una componente di analisi economica, che caratterizza l’itinerario culturale sotto il profilo economico, permettendo di prevedere l’impatto delle iniziative promosse e di riscontrare nel tempo le previsioni effettuate.
- Una componente di monitoraggio, che consente la specifica dei requisiti di tutela, l’identificazione delle tecniche di monitoraggio tenendo conto dei risultati previsionali della componente di analisi economica.

L’attività è di ricerca industriale prevede trasferimenti scientifici sulle seguenti tematiche:

- sistema di regole per l’analisi economica;
- specifica dei requisiti di tutela;
- modelli di simulazione per la generazione degli stati del sistema prodotti in sede revisionale.

- **Tipo attività: RI**

A.5.8 – Sistema di supporto al delivery

- **Descrizione**

Tale attività ha per oggetto le risorse applicative dell’ontologia dedicata al pubblico. Esse operano sull’ontologia di riferimento e comprendono:

- le primitive necessarie per usare l’ontologia come sistema di content management per generare simulatori di percorsi storico-culturali pubblicabili su WEB;
- le primitive necessarie per costruire una rappresentazione visiva fruibile di porzioni dell’ontologia;
- le primitive necessarie per usare, nell’ambito di spazi espositivi e in modo consistente con i contenuti dell’ontologia, le rappresentazioni rese possibili dall’OR 4.

L’attività è di sviluppo precompetitivo.
• *Tipo attività: SP*

A.5.9 – Messa a punto del prototipo integrato

• *Descrizione*

L’obiettivo dell’attività è la produzione di un dimostratore unico dei risultati prodotti dall’OR 5.
L’attività è di sviluppo precompetitivo.

• *Tipo attività: SP*

2.2.5.d) Risultati per attività e partner coinvolti

<table>
<thead>
<tr>
<th>Attività</th>
<th>OR</th>
<th>5</th>
<th>Risultati</th>
<th>Responsabile</th>
<th>Partner Coinvolti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>Report</td>
<td>CM Sistemi Sud</td>
<td>Unirc/Unicz/Intersiel/Sirfin/Id-technology/Infobyte/Infomobility</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td></td>
<td>Report</td>
<td>CM Sistemi Sud</td>
<td>Unirc/Unicz/Infomobility</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td></td>
<td>Report Modulo sw</td>
<td>CM Sistemi Sud</td>
<td>Sirfin</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td></td>
<td>Report Modulo sw</td>
<td>CM Sistemi Sud</td>
<td>Unical/Unirc/Unicz/</td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td></td>
<td>Report Modulo sw</td>
<td>CM Sistemi Sud</td>
<td>Id-technology</td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td></td>
<td>Report Modulo sw</td>
<td>CM Sistemi Sud</td>
<td>Unical, id-technology, infomobility</td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td></td>
<td>Report</td>
<td>CM Sistemi Sud</td>
<td>Infobyte, ID-Technology</td>
</tr>
<tr>
<td></td>
<td>5.7</td>
<td></td>
<td>Report Modulo sw</td>
<td>CM Sistemi Sud</td>
<td>Intersiel, Sirfin</td>
</tr>
<tr>
<td></td>
<td>5.8</td>
<td></td>
<td>Modulo sw</td>
<td>CM Sistemi Sud</td>
<td>Infomobility</td>
</tr>
<tr>
<td></td>
<td>5.9</td>
<td></td>
<td>Prototipo sistema sw</td>
<td>CM Sistemi Sud</td>
<td>Intersiel, Sirfin</td>
</tr>
</tbody>
</table>

Tabella 12 – Risultati, responsabili e partner OR5
2.2.5.e) Input dell’OR5
- Schemi concettuali di sistemi informativi di catalogo standard a livello nazionale ed europeo;
- Schema di riferimento per i risultati del rilevamento dei fondali;
- Schema di riferimento per i beni sottoposti ad analisi archeometriche;
- Portale della cultura;
- Portale del turismo;
- Requisiti documentali della ricognizione;
- Repertorio dei media usati e delle primitive di manipolazione;
- Requisiti per la specifica dei protocolli di tutela;
- Requisiti per il delivery.

2.2.5.f) Output dell’OR5
- Protocolli di accesso al patrimonio documentale;
- Protocolli di accesso all’ontologia di riferimento;
- Modello per la pianificazione degli interventi;
- Delivery dell’ontologia;
- Software per la gestione e l’accesso alla base documentale;
- Dimostratore del sistema di catalogazione basato sulla conoscenza.

2.2.5 g) Collegamenti tra l’OR5 e gli altri OR del progetto
L’OR5 acquisirà dati sotto forma di input dagli OR1, OR2 ed OR3 e più precisamente:
- dall’OR1: Schema di riferimento per i risultati del rilevamento dei fondali;
 Requisiti documentali della ricognizione;
- dall’OR2: Repertorio dei media usati e delle primitive di manipolazione;
 Requisiti per la specifica dei protocolli di tutela;
- dall’OR3: Schema di riferimento per i beni sottoposti ad analisi archeometriche;
 Requisiti per la specifica dei protocolli di tutela;
- dall’OR4: Requisiti per il delivery.

Rilascerà dati sotto forma di output all’OR1, OR2, OR3, OR4, e OR6 e più esattamente:
- all’OR1: Accesso al patrimonio documentale;
- all’OR2: Accesso all’ontologia di riferimento;
 Modello per la pianificazione degli interventi;
- all’OR3: Accesso all’ontologia di riferimento;
 Modello per la pianificazione degli interventi;
- all’OR4: Accesso all’ontologia di riferimento;
 Delivery dell’ontologia;
- all’OR6: Dimostratore del sistema di catalogazione basato sulla conoscenza.
2.2.5.h) Riferimenti bibliografici dell’OR5

http://cidoc.ics.forth.gr/docs/dc_to_crm_mapping.rtf

http://cidoc.ics.forth.gr/docs/opengis_map.doc

http://cidoc.ics.forth.gr/docs/mappingdtd.rtf

[EAD] *EAD - Encoded Archival Description Official Web Site*. http://lcweb.loc.gov/ead/

http://cidoc.ics.forth.gr/docs/guide.htm

http://dublincore.org/documents/2001/04/12/usageguide/

[ICCD] ICCD - Istituto Centrale per il Catalogo e la Documentazione.
http://www.iccd.beniculturali.it/

http://www.ietf.org/rfc/rfc2731.txt

http://www.cimi.org/old_site/documents/dtd5design.html

[OPENGIS] OpenGIS. http://www.opengis.org/

2.2.6) OR6: Integrazione dei risultati ottenuti e realizzazione del dimostrativo

2.2.6.a) Descrizione dell’OR6

I prodotti e le tecniche innovative alla base della ricerca industriale che sono state sviluppate negli obiettivi realizzativi precedenti devono essere integrati con l’obiettivo di realizzare la definizione di metodologia dell’intero sistema MESSIAH.

Le problematiche di integrazione riguardano quindi fondamentalmente la messa a punto dell’intera filiera a partire dalle fasi di ricognizione fino a quelle di recupero e salvaguardia dei beni sottomarini sommersi.

Dall’analisi della letteratura scientifica, in ambito subacqueo, è emerso che molte delle metodologie che potremmo proporre risultano essere considerate complementari o del tutto nuove. Sostanzialmente l’utente finale di questa strumentazione è l’archeologo, che dovrà sostituire ai sistemi tradizionali sistemi considerati “complementari”, e nel far questo superare un certo scetticismo.

Una rapida affermazione di nuove tecnologie in un settore piuttosto tradizionalista si può comunque ottenere dimostrando che gli strumenti realizzati hanno una capacità di documentazione migliore delle tecniche tradizionali, che sono più precisi, e che riducono notevolmente i tempi di realizzazione della documentazione necessaria allo scavo.

Un aspetto fondamentale sarà la capacità, da parte degli sviluppatori degli applicativi software, di realizzare strumenti di interfaccia che producano documentazione dall’aspetto “familiare” per gli operatori del settore, riducendo le difficoltà del primo impatto con una tecnologia di tipo innovativo ma, proprio per questo, desueta e quindi estranea all’uso quotidiano.

Molto importante, per giungere a soluzioni intelligenti di immediato utilizzo, sarà la comunicazione tra sviluppatori ed utenti delle tecniche proposte, e la cura posta nella formazione del personale specializzato nell’uso delle tecniche stesse.

La Tabella che segue riassume quindi le attività che sono state individuate per realizzare tale percorso integrato.

<table>
<thead>
<tr>
<th>Attività</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Integrazione Dinamica degli OR</td>
</tr>
<tr>
<td>6.2</td>
<td>Realizzazione del Dimostrativo</td>
</tr>
<tr>
<td>6.3</td>
<td>Analisi dei risultati conseguiti e loro presentazione alla Comunità Scientifica</td>
</tr>
</tbody>
</table>

Tabella 13 - Attività OR6
2.2.6.b) *Stato dell’arte dell’OR6*

Si sintetizza qui di seguito una metodologia di riferimento (estremamente indicativa) suddivisa per fasi in cui si evidenziano attuali tecniche ormai consolidate che hanno, a volte caratteristiche di rigorosità scientifica, altre volte forti componenti dipendenti dall’archeologo subacqueo che opera.

Ricognizione
- Ricognizione per mezzo di dispositivi elettronici
- Ricognizione per mezzo di dispositivi nautici tradizionali
- Ricognizione aerea

Rinvenimento

Studio Storico-Artistico
- sondaggio visivo;
- sciabica a passaggi concentrici e a passaggi paralleli;
- ecoscandaglio o ecosonda;
- side scan sonar;
- multibeam echosounder;
- subbottom profiler;
- remotely operated vehicle (ROV);
- sottomarini;
- relitti in giacitura subacquea;
- fonti dirette (relitti);
- fonti indirette: letterarie, iconografiche, etnografiche;

Prospezione
- Prospezione Rinvenimento e studio storico artistico

Nel caso in cui non si possa procedere:

si provvede a tutelare il relitto da danneggiamenti e da attività clandestine (protezione con geotessuto, re-interro con sacchi di sabbia o altra copertura, protezione contro l’attività di pesca)

Nel caso in cui si possa procedere:

valutazione tecnico-economica degli interventi da effettuare

Progetto di recupero rilevamento
- Quadrettatura e Trilaterazione
- sorbona ad aria e ad acqua
- lancia ad acqua
- tubo di Ruoff
- pompe di drenaggio
- isolamento su un cavalletto ligneo
CULTURA E INNOVAZIONE S.C.a R.L.

- pulitura dal sedimento per mezzo di:
 - lancia ad acqua
 - pompe
 - secchi
 - sessole
 - spugne
- pompe di drenaggio

Scavo
- Stratigrafia Fotografica
 1. fotomosaico
 2. fotogrammetria metrica
- Grafica (Planimetria e fotomosaico)
 1. schizzo
 2. disegno di rilievo manuale e/o strumentale

Documentazione

 - Disegno:
 - misurazione per coordinate polari
 - misurazione per coordinate cartesiane
 - trilaterazione
 - trisponder
 - restituzione grafica da rilievo strumentale

 - fotogrammetria metrica o 3D laser scanner, per i relitti in giacitura terrestre
 - fotogrammetria, per i relitti in giacitura subacquea

 - In ambiente subacqueo:
 - telaio rigido
 - palloni ad aria compressa di sollevamento
 - cavi da traino e argani di sollevamento
 - prosciugamento dell’area sommersa (per le basse profondità in aree protette) - alloggiamento in bacini minori
 - copertura dei relitti in sito:

Nei primi due casi, i relitti sono trasportati in più parti tagliate oppure smontate: queste vengono sigillate in contenitori stagno, immersi in acqua, per impedire l’evaporazione.

 - Sistemazione su un cavalletto di sostegno e successivo isolamento per mezzo di una guaina di protezione per quanto riguarda il relitto nella sua interezza
 - Smontaggio e trasporto in immersione per quanto riguarda parti di piccole dimensioni

Protezione trasporto da
– atti di vandalismo
– furti
– attività di pesca a strascico
– interventi civili sul fondo marino
– erosione
– nebulizzazione

Copertura per mezzo di una guaina di protezione trasporto, costituita da:
– gomma siliconica
– velatino applicato con resina siliconica
– carta giapponese fatta aderire con Paraloid B 72
– tessuto di lana applicato con resina poliestere
– guscio di vetroresina

In ambiente subacqueo
– sacchi di sabbia
– geotessuto

Tutela e valorizzazione
– caratterizzazione dei materiali costituenti
– valutazione dello stato di conservazione
– trattamento desalinizzante
– trattamento consolidante
– essiccamento pulitura
– riassemblaggio presentazione

Gestione, fruizione, valorizzazione
Restauro, manutenzione, conservazione
2.2.6.c) Attività dell’OR6

A.6.1 – Integrazione Dinamica degli OR

- **Descrizione**

 Questa attività integra fra di loro i risultati ottenuti nei precedenti obiettivi realizzativi al fine di verificare i corretti protocolli di comunicazione tra dati e SW. Questa attività è propedeutica alla seguente attività 6.2 che si occuperà della realizzazione del dimostrativo.

 La complessità del progetto richiede una verifica attenta di tutte le componenti diverse che devono comunicare tra loro sia in modalità real-time che in post-processing off-line. A partire dal diagramma di contesto operativo della precedente Figura, di seguito si schematizza il livello di integrazione fra gli OR che si vuole ottenere.

Figura 20 - Obiettivo di Integrazione

- **Tipo attività:** RI
A.6.2 – Realizzazione del Dimostrativo

- **Descrizione:**

Questa attività si articolera in diverse fasi operative che concorreranno alla realizzazione del dimostrativo.

Fase Indagine e Pianificazione

Dalla Cabina di Regia OR4 viene analizzata l’area marina protetta di Crotone, si realizza una indagine cartografica, si individuano dei siti di rilievo in base alle banche dati storiche e viene effettuata una analisi delle richieste Istituzionali che agiscono sul territorio (Soprintendenza e Provincia) sui criteri di conservazione e salvaguardia in base anche ad aree di rischio per danneggiamenti da pesca da strascico o da pesca clandestina con bombe o da rischi di inquinamento per discariche abusive con agenti chimici fortemente aggressivi.

Si individua l’area di interesse e si pianifica la tipologia di indagine con uso dell’OR2, che a sua volta recepisce informazioni sugli apparati e sui costi dall’OR1 e sulla tipologia di missione dall’OR5 e dalla probabilità di trovare reperti dall’OR5. La pianificazione e i dati di simulazione vengono forniti dall’OR2 all’OR4 e si attiva una fase interattiva tra gli OR2 e OR4 alla cui fine viene definita la tipologia di indagine da effettuare. La figura che segue schematizza tale fase operativa:

Figura 21 - Fase Indagine e Pianificazione
Supporto alla Decisione e Piano di Intervento:
In questa fase si comanda all’OR1 l’esecuzione operativa dell’indagine e si predispone la missione operativa in base al piano di intervento ricevuto dall’OR1 a partire dall’OR4. Si innesca così una procedura di analisi con tutte le informazioni a disposizione che determina alla fine la decisione sul piano di intervento da effettuare. La Figura 4 mostra uno schema di questa fase:

Missione Real-Time:
Il piano di missione è a questo punto il percorso da eseguire e si attiva la fase real time l’OR1 durante l’esecuzione dell’individuazione e’ in stretto contatto telematico con l’OR4 da cui riceve messaggi di comando nel caso si debba correggere od effettuare una rettifica migliorativa del piano di indagine. L’OR1 gestisce ed esegue la fase di quick look ed esegue la calibrazione degli apparati richiesti per la specifica indagine.
Durante questa fase la piattaforma di mare e’ collegata alla terra attraverso il sistema telematico e vengono trasferiti i dati real time. L’OR4 invia in modalità’ live i dati ai centri di ricerca collegati all’evento e che sono remotamente connessi. La cabina Regia attraverso l’OR4 correla i dati di simulazione provenienti dal’OR2 con quelli in real time dell’OR1.
Al rilevamento di qualche reperto dopo la verifica positiva di quicklook dell’OR1 si procede con la referenziazione del dato attraverso l’OR5 in modo da contestualizzare il reperto trovato e di collocarlo storicamente e logisticamente all’interno di uno scenario coerente. Lo scenario è evidenziato nella figura che segue.
Nel test si simulerà uno fase di monitoraggio attivo e cioè saranno installate delle telecamere stero per la messa in sicurezza ed il controllo remoto del sito individuato e si lasceranno dei sensori di controllo per aumentare la conoscenza dei parametri del sito al fine di favorire una decisione.
C I CULTURA E INNOVAZIONE S.C.a R.L.

In questa fase l’OR4 produrrà dei dati per la comunità scientifica e divulgherà i risultati delle indagini in modalità multicanale.

Figura 23 - Missione Real-Time

Fase recupero
Si commissione all’OR1 il piano di missione di recupero. L’OR1 invia i dati real time all’OR4 che dalla cabina di regia segue le operazioni di recupero e le dissemina alla comunità scientifica interessata al recupero laboratori di restauro.
Viene consultata la banca dati video per verificare se in altri casi simili vi sono stati dei problemi particolari in base all’a positione in sito del reperto da recuperare.
Si procede con le fasi di recupero e con le tecniche pianificate dall’OR2.
Il reperto messo in sicurezza viene trasportato nel laboratorio dove si procede alla fase di restauro OR3.
L’OR4 riceve le informazioni del processo di restauro e i risultati finali del reperto per la catalogazione che viene referenziata nell’OR5 in uno stato di messa in salvaguardia del bene e di sua disponibilità alla fruizione.
L’OR4 ricontestualizza il bene e lo presenta alla comunità scientifica ed agli utenti (studenti, addetti ai lavori, turisti,..) per la sua fruizione con la memoria storica di dove il reperto è stato trovato e la sua contestualizzazione virtuale. Il sistema nel suo complesso ha aumentato la sua conoscenza.
In termini di fruizione la conoscenza acquisita dal sistema è in grado di presentare nuovi contenuti a valore aggiunto, che entrano nel corredo informativo del reperto storicizzato e nuovi elementi conoscitivi che entrano nelle banche dati del sistema di pianificazione (rendendolo sempre più efficace ed accurato per le future indagini o recuperi o restauri).

Produzione Prodotti Derivati
In questa fase saranno analizzati i dati ed i prodotti audio video ottenuti dai vari OR al fine di inserirli in un motore software in grado di virtualizzare il concetto di dispositivo
fisico e di contenuto dell’informazione. Questo motore deve essere lo strato di interfaccia di MESSIAH sia dal lato HW che da quello SW. Deve quindi consentire l’interfacciamento di piattaforme di mercato o di standard di mercato e verificare la validità del risultato prodotto sia su rete IP, che su tecnologia mobile (DVBH) che su tecnologia TV (DTT o HDTT) garantendo il livello qualitativo del risultato compatibile con il device utilizzato. Un particolare aspetto è costituito dai derivati off-line come i DVD o CD-ROM per cui saranno prodotti formati di uscita tipo bollettini o note tecniche preconfigurati e con un processo il più automatico possibile che li riporta a derivati equivalenti a quelli oggi in uso per l’infomobilità (tipo meteo, traffico e news..).

- **Tipo attività: SP**

A.6.3 – Analisi dei risultati conseguiti e loro presentazione alla Comunità Scientifica

- **Descrizione:**

Attività di analisi dei dati e di disseminazione al fine della lotro divulgazione e del confronto tecnico scientifico attorno alle problematiche sperimentali del progetto MESSIAH. Le attività di disseminazione e di presentazione dei risultati saranno utili per effettuare un monitoraggio del livello di riscontro relativamente alle fasi sperimentali e di dimostrativo del progetto MESSIAH. L’obiettivo di questa attività è di analizzare e interpretare i risultati raggiunti nella campagna di sperimentazione con le tecnologie innovative messe a punto. Tale attività si focalizzerà sulle seguenti tipologie di risultati:

- i risultati conseguiti utilizzando singolarmente le nuove tecnologie;
- i risultati conseguiti nelle singole fasi della metodologia;
- i risultati ottenuti considerando il sistema MESSIAH nel suo insieme.

L’analisi e l’interpretazione di suddetti risultati richiede non solo competenze tecnologiche ma anche competenze specifiche. Per questo motivo l’attività presenterà dei momenti sinergici e lavori congiunti con gli esperti del settore (workshop e conferenze internazionali) che hanno le competenze per analizzare e interpretare i dati qualitativi e/o quantitativi e per inquadrarli in uno studio storico/artistico e storico/tecnico. Al fine di rendere visibile a tutta la comunità degli interessati la natura dei risultati e gli obiettivi scientifici del progetto MESSIAH saranno inoltre predisposti un sito WEB e una serie di azioni di comunicazione strettamente collegate alla comunità degli utenti che intervengono nel sistema MESSIAH.

- **Tipo attività: SP**
2.2.6.d) Risultati per attività e partner coinvolti

<table>
<thead>
<tr>
<th>OR</th>
<th>Attività</th>
<th>Risultati</th>
<th>Responsabile</th>
<th>Partner Coinvolti</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6.1</td>
<td>Report</td>
<td>INFOBYTE</td>
<td>CM SISTEMI SUD/UNIRC/UNICAL/NAUTILUS</td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>Report Prototipo sw</td>
<td>INFOBYTE</td>
<td>CM SISTEMI SUD/UNIRC/NAUTILUS</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>Report</td>
<td>INFOBYTE</td>
<td>UNIRC/UNICAL/CM SISTEMI SUD</td>
</tr>
</tbody>
</table>

Tabella 14 – Risultati, responsabili e partner OR6

2.2.6.e) Input dell’OR6
- Dati del campo sia in modalità on-line che off-line;
- Piani di Intervento;
- Previsioni Degrado;
- Simulazioni Itinerari Turistici;
- Ricostruzioni 3D;
- Previsioni Restauro;
- Simulazioni Degrado;
- Modelli Ontologici Evoluti;
- Base Dati Multimediale e Dati Real time.

2.2.6.f) Output dell’OR6
- Sistema MESSIAH integrato e pronto alla fase di sperimentazione;
- Dimostrativo del Sistema MESSIAH valicato;
- Restituzione dei risultati scientifici eterogenei alla comunità scientifica e agli utenti del sistema MESSIAH.

2.2.6 g) Collegamenti tra l’OR6 e gli altri OR del progetto
L’OR6 integra fra di loro i risultati ottenuti nei precedenti obiettivi.

2.2.6.h) Riferimenti bibliografici dell’OR6
Non Applicabile
2.2.7) OR7: Studio e definizione di modelli innovativi knowledge based per il trasferimento tecnologico della ricerca di base per i beni culturali

2.2.7.a) Descrizione dell’OR7

Premessa
E’consolidata convinzione dell’Università di Reggio Calabria (Soggetto responsabile dell’OR7), coerentemente con quanto avviene a livello europeo, nazionale e regionale, che i processi di crescita e sviluppo economico ad ogni scala territoriale e dimensionale dipenda dalla conoscenza, ciò costituisce la maggiore e solida prospettiva per le aree regionali a maggior ritardo di sviluppo come la Calabria. Tale prospettiva deve necessariamente fondarsi su un approccio strategico innovativo e coerente con gli scenari prospettati a livello nazionale ed internazionale.

Il nuovo approccio si fonda sul modello del distretto tecnologico orientato a definire ed attuare una strategia di rafforzamento delle attività di ricerca e sviluppo puntando a:

- spingere il sistema della ricerca universitaria a cooperare ed sostenere il processo di crescita del sistema delle imprese regionale.
- indirizzare e rafforzare il sistema regionale delle imprese ad utilizzare la ricerca e l’innovazione come fattori di vantaggio e crescita competitiva.

Secondo l’analisi svolta da UNIRC in merito alla programmazione regionale in materia di innovazione e ricerca il progetto di azione pilota per la creazione del distretto tecnologico dei beni culturali si propone di sviluppare due linee di azione principali:

1. impostare, in modo organico e strutturato, un nuovo rapporto tra il sistema della ricerca e il sistema industriale;
2. favorire il rafforzamento delle imprese nei settori tecnologici più avanzati e creare le condizioni per la nascita di nuove imprese nei segmenti innovativi delle tecnologie applicate ai beni culturali.

Perciò l’azione pilota per la creazione del distretto tecnologico dei beni culturali configura la realizzazione, su scala regionale, di una rete di eccellenza interdisciplinare incentrata su tre aree tecnologiche rilevanti per il settore dei beni culturali: modelli e processi innovativi di knowledge based applicati ai beni culturali; tecnologie per la conservazione, il restauro e la tutela dei beni culturali; tecnologie per la ricerca applicata alle tecniche di individuazione e scavo dei siti archeologici.

Pertanto l’azione pilota per la creazione del distretto tecnologico, coerentemente con le indicazioni nazionali e regionali, intende perseguire i seguenti macro obiettivi:

- rivoluzionare il sistema della ricerca regionale puntando ad attivare e stabilizzare una innovazione permanente nel rapporto ricerca di base e ricerca industriale, nel settore dei beni culturali, attraverso un insieme organico di interventi per: aumentare la massa critica di risorse umane, imprenditoriali e tecnologiche per raggiungere livelli di eccellenza capaci di generare una capacità attrattiva di risorse finanziarie delle attività di ricerca ed innovazione;
rendere disponibili strutture, competenze, conoscenze e risorse per promuovere uno scambio di ricerca tra Università ed imprese; aumentare il trasferimento di conoscenze verso le imprese ed il territorio.

- far nascere e strutturare un approccio tra ricerca ed impresa di tipo cooperativo che possa produrre una capacità progettuale forte, fondata su un numero di progetti focalizzati e elevato spessore, su tematiche concertate tra imprese e sistema universitario capaci di generare l’auspicato obiettivo di favorire il trasferimento tecnologico e di conoscenze in senso biunivoco

- favorire l’affermazione e la stabilità di questo processo creando l’ambiente favorevole al rafforzamento competitivo delle imprese partecipanti ed alla possibilità di creare imprese, da spin-off aziendali o universitari, ad elevata tecnologia capaci di muoversi lungo la frontiera più avanzata dell’innovazione.

Tali condizioni, ambientali e strutturali, si possono individuare, non esaustivamente, nella ideazione di meccanismi che favoriscono la creatività; la costruzione di condizioni di contesto multi-disciplinare, all’interno del sistema universitario, che governi la complessità di materie, interazioni, processi ed prodotti; l’accelerazione dei processi di sviluppo delle idee imprenditoriali ed il miglioramento del processo creativo a base della ricerca verso il mercato.

- favorire la creazione di una eccellenza di rete, in termini qualitativi e quantitativi, tra i componenti del distretto distribuito su tutto il territorio regionale.

La rete, che si intende costruire con l’azione pilota, è centrata sui laboratori universitari quali strumenti operativi, organizzati, supportati e orientati a logiche di business, per sviluppare progetti di ricerca e di trasferimento tecnologico nel settore dei beni culturali.

In sintesi l’azione pilota del distretto è concentrata, pur nelle sue articolazioni progettuali, a costruire e governare un processo che si origina nella conoscenza prodotta dagli enti di ricerca e si dirige verso la realizzazione di un prodotto, di un processo o di un servizio; nel contempo l’operatività in un rinnovato ambiente multi-disciplinare e l’approccio coordinato tra le risorse umane di diversa provenienza e formazione consentirebbe di conseguire i passaggi intermedi che procedono dalla conoscenza alla tecnologia e, successivamente, dalla tecnologia al prodotto di interesse specificatamente aziendale.

L’orientamento del progetto nell’ambito del distretto e delle sue attività

Alla luce degli scenari tracciati dal MIUR, per i distretti tecnologici, e dalla Regione Calabria nella propria programmazione legata alla strategia per l’innovazione si identifica per il progetto una serie di punti chiave per la strutturazione, attuale e futura, del progetto: la selezione e l’approfondimento dei settori d’intervento; l’identificazione delle aree di ricerca più attrattive, nel breve e lungo periodo; la corretta ed efficace connessione tra queste e quelle espresse dalle imprese attraverso progetti di qualità di portata utile allo sviluppo del territorio.

E’ perciò evidente che si dovrà approfondire, a livello micro, nei progetti esecutivi, tra laboratori e sistema delle imprese, il processo bilanciato e condiviso di valutazione ed indagine sulle esigenze di sviluppo di innovazione e di posizionamento strategico delle
componenti progettuali e la comparazione tra le scelte effettuate e le proposte per il comparto definite a livello nazionale ed internazionale.

La scelta, a livello macro, dei settori d’intervento dà risposta a due esigenze: massimizzare la ricaduta per il tessuto economico ed imprenditoriale a livello regionale e favorire la nascita di una massa critica che garantisca l’eccellenza.

Gli ambiti tecnologici suggeriti ed oggetto di successivo approfondimento progettuale sono:

1. I modelli e processi innovativi di knowledge based applicati ai beni culturali;
2. Le tecnologie per la conservazione, il restauro e la tutela dei beni culturali;
3. Le tecnologie per la ricerca applicata alle tecniche di individuazione e scavo dei siti archeologici.

Secondo l’analisi di UNIRC il distretto si propone di sviluppare, nella declinazione delle Azioni previste dal bando regionale, le seguenti macro attività:

- elaborazione delle linee strategiche di indirizzo per tutte le attività di distretto;
- l’analisi delle linee evolutive della ricerca scientifica e della tecnologia;
- l’individuazione dei settori a maggior potenziale di sviluppo per la ricerca, per il trasferimento tecnologico e per l’impresa;
- la promozione e l’attuazione di processi formativi delle risorse umane necessarie al sistema distrettuale;
- la promozione ed il supporto ai programmi di studio e ricerca di interesse delle PMI e degli Atenei;
- il consolidamento della capacità di produrre attività di ricerca ad elevato crescita ed impatto economico nel campo delle tecnologie applicate ai beni culturali
- la gestione delle risorse umane, attraverso la formazione ed il recruiting, per rafforzare il capitale umano a favore della ricerca e dei progetti aziendali
- i servizi strutturati di networking per agevolare la ricerca nelle aziende e per le aziende con cui definire rapporti cooperativi e di partenariato commerciale e scientifico
- l’offerta di asset fisici, in termini di attrezzature, laboratori, strutture, ecc., che ogni laboratorio individua e rende disponibile alla rete, definendone e regolamentandone le modalità di uso ed accesso
- l’attivazione da parte delle Università di ogni strumento, iniziativa e/o processo coerente con il D.M. 5 agosto 2004, n. 262 (programmazione del sistema universitario 2004-2006) utile e necessaria per il raggiungimento degli obiettivi nazionali e regionali previsti per il distretto tecnologico.

I Laboratori che costituiscono lo strumento operativo prioritario per la costruzione del Distretto tecnologico, sono dotati di personalità giuridica indipendente o di emanazione dell’Ateneo di appartenenza e soggetto, pertanto, alla regolamentazione ed alla normativa universitaria. Ogni Laboratorio, secondo le determinazioni dell’Ateneo di appartenenza, avrà autonomia gestionale ed organizzativa e metterà a disposizione del Distretto le
risorse umane e gli asset materiali ed immateriali necessari alla realizzazione dei propri progetti e dei progetti aziendali in ordine alla regolamentazione contrattuale vigente.

Ogni Laboratorio, d’intesa con l’Ateneo di appartenenza e con il Comitato tecnico-scientifico, potrà, all’interno dell’area regionale di competenza del Distretto e soprattutto al di fuori della Regione: sviluppare programmi, progetti ed iniziative di ricerca industriale o progetti di ricerca pianificata o indagini critiche tese ad acquisire nuove conoscenze, utili per la messa a punto di nuovi prodotti, processi produttivi o servizi o per conseguire un miglioramento dei prodotti, dei processi produttivi o dei servizi esistenti; progetti e/o iniziative di sviluppo precompetitivo per concretizzare i risultati della ricerca industriale in un piano, un progetto o un disegno relativo a prodotti, processi produttivi o servizi innovativi o nuovi e destinabili alla vendita o alla utilizzazione. Gli Atenei assumono che, coerentemente con il D.M. 262/2004 art. 12, le attività di supporto alla strategia ed alla operatività dei Laboratori è assunta dai Liaison Office d’Ateneo.

Il sistema del Cluster
UNIRC ha assunto, dalle analisi del sistema delle imprese, dello stato della ricerca di base, dalle linee di tendenza delle tecnologie applicate ai beni culturali e dalle indicazioni nazionali e regionali, che l’azione pilota del Distretto tecnologico dei Beni culturali si possa concentrare su tre ambiti tecnologici, articolati su n aree di ricerca e n filiere progettuali su cui sviluppare i progetti di ricerca industriale.

Per poter rendere operativo questo disegno progettuale si è inteso individuare una corrispondenza tra i tre ambiti tecnologici e gli insiemi di competenze ed asset, coerenti contali ambiti, rilevabili nella regione Calabria. Questi raggruppamenti si possono definire come dei cluster.

All’interno dei cluster i Laboratori di UNIRC rappresentano il braccio operativo con cui si realizza l’attività di sistema e sono costituiti dalle risorse materiali ed immateriali di ciascun Ateneo messe in rete per sviluppare le iniziative previste nelle n aree di ricerca ed ogni Laboratorio potrà operare all’interno delle filiere progettuali attraverso i progetti specifici.

I cluster individuabili come di interesse di UNIRC nell’ambito del progetto di distretto sono:

1. I modelli e processi innovativi di knowledge based applicati ai beni culturali;
2. Le tecnologie per la conservazione, il restauro e la tutela dei beni culturali;
3. Le tecnologie per la ricerca applicata alle tecniche di individuazione e scavo dei siti archeologici.

In tal modo per ogni cluster UNIRC ha individuato i Laboratori che li costituiscono definendo: la loro mission complessiva e nel Distretto; la descrizione delle filiere progettuali in cui intervengono; le strutture di ricerca che li compongono come organizzazione e come asset; le aziende che cooperano e/o con cui cooperano nei progetti di ricerca; una traccia di macro-programmazione delle attività su base quinquennale; le risorse umane necessarie per lo sviluppo delle attività; le facilities aggregate ed aggregabili
dal Laboratorio ed in specie le strutture scientifiche da realizzare e quelle esistenti da condividere e/o sviluppare.

Alla luce di quanto sopra riportato l’OR7, a titolarità del Laboratorio Piani e Progetti, da un punto di vista generale, si propone di sviluppare due linee di azione principali:

- impostare, in modo organico e strutturato, un nuovo rapporto tra il sistema della ricerca di Ateneo ed il sistema industriale;
- favorire il rafforzamento delle applicazioni di knowledge based, su dati e conoscenze certificate, delle imprese nei settori tecnologici più avanzati e creare le condizioni per la nascita di nuove imprese nei segmenti innovativi delle tecnologie dei processi cognitivi applicati ai beni culturali.

In particolare l’OR7 è orientato a favorire il trasferimento, certificato e valicato, della ricerca di base a sostegno della ricerca industriale per la creazione di modelli innovativi di supporto ai processi cognitivi di knowledge based ed intende operare a livello regionale, nazionale ed internazionale e trovare, nel contesto MESSIAH, un suo forte razionale di territorio (pilota a livello regionale - nell’ambito del distretto tecnologico di Crotone) finalizzato a supportare il processo di aggregazione tra le imprese specializzate e le Università del territorio per creare una filiera che faccia uso di processi cognitivi e li applichi nel settore dei beni culturali.

Le attività dell’OR7 si correlano fortemente con l’Azione 2, e trovano all’interno dell’attuatore (UNIRC) il Laboratorio Piani e Progetti di Ateneo - già esperto nei sistemi di knowledge broker finalizzati per la ricerca; è più che mai opportuno ripartire da questo “ambiente di lavoro”, già frontiera di sistemi esperti di diffusione, certificazione e validazione della conoscenza per mirare:

- ad un Knowledge Based che preveda l’impiego di modelli innovativi, orientati alle applicazioni ICT di frontiera, per soddisfare le diverse esigenze delle Knowledge-Sharing Community che raggruppano i docenti, i ricercatori nel duplice ruolo di produttori e fruitori della conoscenza, e i tecnici aziendali specializzati attuatori di programmi di ricerca industriale e applicata;
- a fornire automatismi e facilities in grado di rendere la ricerca di base immediatamente immettibile nei percorsi produttivi ed in un contesto di validazione e certificazione;
- a creare, per un utente, un “ambiente di lavoro” che coniuga ricchezza dei contenuti cognitivi ed informativi, quindi fortemente utili per le attività di ricerche congiunte, con facilità d’uso ed efficienza.

Così facendo si intendono ottenere due risultati di ampio respiro:

- un avanzamento della Community di UNIRC, aggregabile nel Laboratorio Piani e Progetti, verso profili di altissima qualità;
- creare un network di conoscenze che aggrega nuove risorse umane, scientifiche e produttive.
Partendo dal presupposto che ogni Laboratorio di UNIRC opererà su singole o più aree progettuali attraverso la compartecipazione ai progetti specifici, questi rappresentano lo strumento attuativo primario su cui si sviluppa la collaborazione Università – Imprese.
La rete, che si intende costruire, costituisce la dorsale progettuale su cui si sviluppa l’intera attività e prevede la nascita dei laboratori, quali strumenti operativi del progetto, che nascono dalle competenze e dalle risorse di conoscenza delle strutture di Ateneo e si sviluppano su specifici progetti di ricerca e trasferimento tecnologico, orientandosi a logiche di business ed operando su due linee programmatiche: elaborazione di programma di condivisione e cooperazione nelle attività di ricerca industriale e avanzamento delle conoscenze. Dal punto di vista strutturale ed operativo si procederà ad individuare la corrispondenza “logica” tra gli ambiti tecnologici e di ricerca e le aree progettuali di ricerca industriale creando un cluster.
All’interno della logica del cluster i laboratori, costituiti dall’insieme dei laboratori esistenti e dalle conoscenze tecnico-scientifiche messe in rete per lo sviluppo delle iniziative di ricerca, compongono il braccio operativo con cui si realizza l’attività di ricerca sistemica.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Laboratori</th>
<th>Filiere Progettuali</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelli e processi innovativi di knowledge based applicati ai beni culturali</td>
<td>UNIRC Laboratorio Piani e Progetti</td>
<td>Trasferimento tecnologico per lo sviluppo di piattaforme informative avanzate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sviluppo e trasferimento di nuovi processi cognitivi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trasferimento tecnologico dei modelli e delle rappresentazione della conoscenza per i BB.CC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Validazione e certificazione dei dati e delle conoscenze scientifici in funzione dei processi di innovazione industriale</td>
</tr>
</tbody>
</table>

Figura 24 – Il sistema del cluster
Un’ipotesi metodologica corrente è orientata verso la realizzazione, su piattaforma Internet/Intranet, di servizi ICT. Ciò consente di favorire lo sviluppo e la condivisione delle conoscenze all’interno di comunità scientifiche dell’Università di Reggio Calabria (Knowledge-Sharing Community) ed il mondo imprenditoriale, attraverso tecnologie telematiche fortemente decentrate, per l’obiettivo specifico di potenziare i processi di collaborazione e le attività di formazione e training.

Questo obiettivo potrà essere raggiunto individuando e disegnando un modello di Knowledge Based che permetta poi di realizzare, attraverso le reti telematiche e componenti software, un insieme di servizi innovativi finalizzati alla collaborazione e allo scambio, condivisione e diffusione di informazioni, idee e conoscenze tra gli utenti.

Il Knowledge Based rappresenta il punto di accesso alle informazioni e ai servizi che il sistema di K Based mette a disposizione del knowledge worker.

Lo studio metodologico verterà su:

- la definizione delle esigenze e degli obiettivi specifici dei soggetti coinvolti nell’ambito della ricerca e della produzione industriale nell’ambito dei beni culturali;
- l’adozione di una metodologia affidabile per l’individuazione, analisi e mappa delle sorgenti e dei depositi di conoscenza e per l’analisi dei processi all’interno dei gruppi di lavoro, ovvero degli step operativi:
 - contenuti di conoscenza;
 - processi di collaborazione;
- la definizione dei processi e dei modelli di gestione del complesso informativo:
 - il loro potenziale miglioramento;
 - Strutturazione di servizi, di controllo e validazione;
 - l’ottimizzazione del trasferimento cognitivo.
- Il design, lo studio e la progettazione di una piattaforma dell’informazione e tecnologica che meglio si adatta alla realizzazione del modello di gestione della conoscenza.

Figura 25 – Schema metodologico sistema di knowledge based
Lo studio sarà finalizzato all’opportunità di procedere allo sviluppo del Knowledge Based interdisciplinare per l’uso della conoscenza, per la sua condivisione, diffusione e trasferimento nel campo dei Beni Culturali verso le imprese e per favorire la nascita di nuove imprese.

Date le caratteristiche proprie del comparto scientifico al quale partecipa l’Università degli Studi Mediterranea di Reggio Calabria con i propri Laboratori individuati e da creare e/o rafforzare, si distinguono le attività da porre in essere in presupposti di base e indirizzi specifici. Sia in un caso che nell’altro comunque esse puntano all’avanzamento degli orizzonti della conoscenza scientifica e tecnica e – maggiormente – al trasferimento cognitivo alle aziende.

Gli elementi di forza, quindi, vanno ricercate nei seguenti punti:

− **Rafforzare il patrimonio di studi e ricerche, come fattore di crescita culturale di una Università che sempre più si propone leader in approfondimenti tecnici utili per il riconoscimento sia a livello mondiale che del mediterraneo delle diverse identità culturali:**
 - Accumulando le conoscenze tecniche e scientifiche, al fine di contribuire ad arricchire il contenitore-archivio documentale sul quale impostare nuovi tracciati di ricerca;
 - Condividendo e rendendo disponibile il bagaglio culturale e scientifico della produzione di ricerca universitaria ed aziendale;
 - Evidenziando gli aspetti applicativi e industrializzabili della ricerca scientifica perché il mondo imprenditoriale ne intuisca l’opportunità di avviarne il rischio d’impresa.

− **Fornire supporto scientifico** alle aziende che intendono avviare ricerche nel settore dei Beni Culturali, con particolare riferimento all’archeologia subacquea:
 - definendo i protocolli di indagine e ricerca, per standardizzare percorsi di lavoro del sistema delle imprese al fine di una riconoscibilità di processi e risultati;
 - certificando i dati di partenza, per sostenere il processo di ricerca industriale accertando la fondatezza dei dati di base o le fonti di riferimento come fattore di vantaggio e di crescita competitiva;
 - validando i risultati, al fine di garantire la “bontà” ed l’originalità dei risultati, certificando la scientificità degli stessi e accertando la standardizzazione le procedure adottate.

Strumenti di gestione della conoscenza

Gli ingredienti e le discipline coinvolte nella costruzione e manutenzione dei meccanismi di gestione delle conoscenze, ancorché provenienti da organizzazioni diverse, sono molteplici e di complessa realizzazione. I processi interni, le architetture strumentali, gli assetti organizzativi devono convergere verso l’obiettivo di potenziare i processi lavorativi (supporto, formazione, tutoring, ricerca, ecc…) con tutta la conoscenza che è disponibile
nel sistema lavorativo. In sintesi - attraverso processi di **Knowledge based** - il modello in studio deve costituire un processo organizzativo che ricerca combinazioni sinergiche tra i dati, le capacità di information-processing delle tecnologie e le capacità creative ed innovative delle risorse umane.

Una gestione sistematica della conoscenza inteso come quell’insieme di processi, strumenti e infrastrutture mediante le quali un’organizzazione migliora, mantiene e sfrutta la sua base di conoscenza (figura a lato).

Le soluzioni di K Based possono essere individuate solo attraverso una fase di analisi (Assesment), che serve a capire le esigenze e gli obiettivi d’utenza relativamente al contenuto della conoscenza ed ai processi che la utilizzano.

Figura 26 –Processi knowledge-based

Queste esigenze vengono mappate sulle caratteristiche delle tecnologie di riferimento e quindi si stabilisce la migliore integrazione-infrastruttura tecnologica con cui sarà sviluppato il progetto.
Organizzazione e metodologia

Il Responsabile dell’OR7, facente parte insieme a tutti i responsabili di OR di un Comitato tecnico di progetto (rif. paragrafo 11.1.4), è costituito dal soggetto responsabile (UNIRC), delegato dal Rettore.

Esso produce il progetto esecutivo, d’intesa con le altre componenti del modello organizzativo, coordina la gestione complessiva dell’OR7 e risponde agli organi sociali della società consortile.

La metodologia di progetto è definita da UNIRC, attraverso la struttura tecnica di supporto, ed applicata dal Responsabile di progetto e dai Gruppi di progetto.

La struttura tecnica di supporto è costituita dal Liaison Office di UNIRC.

Le Strutture laboratoristiche universitarie collaborano al trasferimento delle conoscenze verso i partner privati partecipando con le proprie competenze e risorse alle iniziative di ricerca industriale nel rispetto della metodologia di program management definita dal Comitato tecnico.

I Gruppi di progetto sono costituiti da personale del partner che gestisce e attua, con propria autonomia organizzativa, il progetto di ricerca industriale proposto dal soggetto privato e rendicona e riferisce al Comitato tecnico di progetto gli stati di avanzamento ed i punti critici.

La metodologia di programmazione e controllo che il Comitato tecnico di progetto intende applicare sarà strutturata nei seguenti blocchi logici:
A. Pianificazione e controllo qualità attraverso la metodica WBS - Work Breakdown Structure
B. Pianificazione e controllo tempi attraverso la metodica: GANTT e Tecniche reticolari (PERT)
C. Pianificazione e controllo costi attraverso al metodica del Budget, di progetto e di sotto progetti, e Indici di performance

La metodologia sarà definita dal Liaison Office di UNIRC che supporterà il Comitato tecnico nella stesura del progetto esecutivo e dei disciplinari di esecuzione progettuale.

Si riporta di seguito una tabella riepilogativa delle attività previste nell’ambito dell’OR7.

<table>
<thead>
<tr>
<th>Attività</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.7.1</td>
<td>Innovazione dei modelli cognitivi interdisciplinari orientati ai beni culturali ed archeologici</td>
</tr>
<tr>
<td>A.7.2</td>
<td>Innovazione delle metodologie di certificazione e validazione dei dati e delle informazione a monte ed a valle dei processi aziendali di innovazione e di produzione</td>
</tr>
<tr>
<td>A.7.3</td>
<td>Nuove integrazioni cognitive e tecnologiche per piattaforme complesse orientate ai beni culturali ed archeologici</td>
</tr>
<tr>
<td>A.7.4</td>
<td>Modelli integrati di supporto alle decisioni per i processi di innovazione delle imprese nel comparto dei beni culturali e della comunicazione e realizzazione del dimostratore</td>
</tr>
</tbody>
</table>

Tabella 15 – Elenco attività OR7
2.2.7.b) Stato dell’arte dell’OR7

Tale OR mira a definire modelli integrati per le applicazioni di ricerca industriale legate alla gestione dei risultati della ricerca in termini scientifici e divulgativi. In particolare gli indirizzi della ricerca di base, svolta dalle Università calabresi, consentono di essere ribaltate sul piano applicativo sviluppando delle linee di ricerca industriale utili alla acquisizione di nuove conoscenze per le imprese orientate allo sviluppo di prodotti e processi produttivi di tipo innovativo. La scelta di tali temi trova un riscontro nella produzione di ricerca di base, oggi patrimonio di conoscenze di esclusivo uso del mondo scientifico. Il trasferire tali conoscenze “fuori”, cioè metterlo a disposizione per forme di arricchimento culturale o sostegno a percorsi di crescita sociale, implica la necessità di consentire spingere alcuni settori imprenditoriali verso la sperimentazioni di nuove tecniche per il knowledge mirando due possibili posizioni:

- quella di confine più avanzato in termini di innovazione (di prodotto o di processo), beneficiando della piattaforma conoscitiva di origine universitaria;
- quella dell’accensione di un circuito dinamico biunivoco tra produzione scientifica e nuovi applicativi industriali.

Tecnologie di riferimento

Le soluzioni strumentali di K Based non hanno un’architettura o tecnologia di riferimento consolidata, o tradizionale. E’ bene invece parlare di “aggretecture” e non di “architecture”.

Il modello OVUM, individuato come modello di framework di riferimento, rappresenta la formalizzazione di questo concetto.
Di seguito è riportata la descrizione sintetica delle componenti individuate nel framewok di riferimento che necessitano delle relative attività di indagine:

- **Il Knowledge Portal** può essere un’interfaccia web personalizzabile alla conoscenza in cui è possibile pubblicare ed organizzare informazioni di tutta l’organizzazione. L’accesso al portale è consentito ai soli utenti autorizzati; inoltre i profili e le permission associati agli utenti del portale consentono l’accesso controllato alle componenti del portale;

- **I Servizi di Collaboration** consentono di catturare e condividere nuova conoscenza ed includono meccanismi per il lavoro di comunità (discussione, bacheche, attribuzione di task, scadenziari). I servizi di collaboration sono integrati a meccanismi di notifica che consentono ad ogni utente di ricevere informazioni su tutti gli eventi che si sono verificati nelle sue aree di interesse del portale (pubblicazione di nuovi documenti, assegnazione di task, assegnazione di passi di workflow ecc.);

- **I Servizi di Discovery** sono meccanismi di ricerca che servono ad individuare l’informazione indipendentemente dal livello gerarchico e dal contenitore in cui essa è racchiusa (mail, documento, record, pagina web, spool di stampa, etc.) ed includono tool di analisi del contenuto. I servizi di discovery possono essere ampliati estendendo la ricerca a fonti di conoscenza esterne al portale;

- **Il Knowledge Map** fornisce la classificazione (tassonomia) in termini di profili ed attributi di tutte le risorse che costituiscono la conoscenza dell’organizzazione;

- **Il Knowledge Repository** è il livello funzionale in cui si gestiscono processi e informazione, è il contenitore della conoscenza che integra le varie sorgenti d’informazione disponibili nell’organizzazione (db, ERP, web, file system, etc.). L’informazione viene aggregata e combinata in modo specifico per poter essere utilizzata con profitto in ciascun processo;

- **Infrastructure** è l’insieme dei servizi di base su cui sono basati i servizi offerti dal portale (servizi di e-mail per le notifiche, servizi internet per l’accesso a fonti di conoscenza, ecc.).
A.7.1 – Innovazione dei modelli cognitivi interdisciplinari orientati ai beni culturali ed archeologici

- **Descrizione**
 Analisi e progettazione di modelli cognitivi interdisciplinari orientati ai beni culturali ed archeologici. In questa attività si procede alla analisi ed alla verifica degli elementi di contenuto e di processo che costituiscono i processi cognitivi applicati ed applicabili nei beni culturali, successivamente si procede alla analisi dei modelli sostenibili di conoscenza e di generazione delle forme cognitive tacite e strutturate in un ambito di interdisciplinarietà.

- **Tipo attività: RI**

A.7.2 – Innovazione delle metodologie di certificazione e validazione dei dati e delle informazione a monte ed a valle dei processi aziendali di innovazione e di produzione

- **Descrizione**
 Analisi e progettazione di una metodologia di certificazione e validazione dei dati e delle informazione a monte ed a valle dei processi aziendali di innovazione e di produzione. Tale fase connessa e conseguente alla prima intende analizzare e ricercare un modello integrato di processi e metodiche per pervenire alla certificazione ed alla validazione dei dati e delle informazioni, di origine e derivazione scientifica, utilizzati ed utilizzabili nei processi aziendali di innovazione e produzione.

- **Tipo attività: RI**

A.7.3 – Nuove integrazioni cognitive e tecnologiche per piattaforme complesse orientate ai beni culturali ed archeologici

- **Descrizione**
 Analisi e progettazione di una piattaforma cognitiva e tecnologica per consentire la trasferibilità delle conoscenze validate e certificate nel campo dei beni archeologici e culturali. Tale attività costituisce la sintesi delle precedenti ed ha come oggetto l’analisi e la progettazione del sistema integrato, tra dati di cognizione e processi di conoscenza, all’interno di una piattaforma di informazioni, specializzata nei beni culturali, organizzata
per processi scientifici strutturati e validata e certificata nei dati conoscitivi in entrata ed uscita.

- **Tipo attività: RI**

A.7.4 – Modelli integrati di supporto alle decisioni per i processi di innovazione delle imprese nel comparto dei beni culturali e della comunicazione e realizzazione del dimostratore

- **Descrizione**

L’obiettivo dell’attività è la realizzazione del dimostratore di un sistema di knowledge management che integra i modelli e le metodologie precedentemente progettate. Il sistema sarà web-based e comprenderà l’utilizzo di tecnologie di workflow e datawarehouse, guidate dall’ontologia generale prevista nell’OR5, per favorire la certificazione e validazione dei dati ed il supporto alle decisioni.

- **Tipo attività: SP**

2.2.7.d) Risultati per attività e partner coinvolti

<table>
<thead>
<tr>
<th>OR</th>
<th>Attività</th>
<th>Risultati</th>
<th>Responsabile</th>
<th>Partner Coinvolti</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7.1 Report</td>
<td>UNIRC</td>
<td>UNIRC</td>
<td>CM SISTEMI SUD / DEMETRA</td>
</tr>
<tr>
<td></td>
<td>7.2 Report</td>
<td>UNIRC</td>
<td>DEMETRA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.3 Report</td>
<td>UNIRC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4 Report Dimostratore sw</td>
<td>UNIRC</td>
<td>CM SISTEMI SUD</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 16 – Risultati, responsabili e partner OR7

2.2.6.e) Input dell’OR7
- Dati della ricerca di base sui beni culturali;
- Base Dati sulla conoscenza.
- Dati provenienti dalla identificazione dei beni dall’OR1
- Dati elaborati dalla Cabina di regia dell’OR4

2.2.6.f) Output dell’OR7
- Modelli di interscambio e coerenti con lo schema relazionale delle banche dati MESSIAH;
2.2.7.g) Collegamenti tra l’OR7 e gli altri OR del progetto
L’OR7 valida e certifica il dato culturale del progetto MESSIAH.

2.2.7.h) Riferimenti bibliografici dell’OR7
AA.VV. “A community of practice on concept mapping”, in “Concept Maps: Theory, Methodology, Technology”, Proceedings of The First International Conference of Concept Mapping (Pamplona, 14-17 settembre 2004)
ANTONELLI C. (1999), La nuova economia della conoscenza e dell’attività innovativa, in (a cura di) ANTONELLI (1999a), op. cit.
ARISTOTELE (1973), Analytica Posterioria, II 19 (100a), Bari.
Bargero M.L. e Tarantini A. (a cura di), Atti del seminario "Costruzione della conoscenza", Oppi, Milano, 1992
BELL M. e PAVITT K. (1993), Technological accumulation and industrial growth: contrasts between developed and developing countries, Industrial Corporate Change 2, pp.157-201.
Beritta, C. "Mappe concettuali e information technology", IS, anno VII, numero 3, settembre 1999
C. Pontecorvo, La condivisione della conoscenza, La Nuova Italia, Firenze 1993
Chianura E. "Mappe concettuali e Cooperazione in rete", in Form@re, n. 26, aprile 2004
F. Butera, I lavoratori della conoscenza, Franco Angeli, Milano 1997
GIBBONS M. et al. (1994), The new production of knowledge, Londra: SAGE.
HAYEK f. (1986), L’utilization de l’information dans la société, Revue francaise d’économie vol. 1,2.
KANT I. (1950), Critica alla Ragion Pura, Bari: Laterza
KOHLER W. (1926), The mentality of apes, New York: Hartcourt Brace Jovanovich

Petrucco C., "Laboratorio di ricerca delle informazioni in Internet" "Studium Educationis - Rivista per la formazione nelle professioni educative", n.3/2002

PIGOU A.C. (1932), The economics of welfare, New York: Macmillan.

PORTER M. (1990), The competitive advantage of companies, New York: Macmillian.

ROSENBERG N. (1976), Perspective on technology, Cambridge: Cambridge University Press

V. Midoro, Modelli teorici e sistemi automatici nella valutazione dell'apprendimento, RT/ITD, 1992

Working Knowledge Thomas H. Davenport, Laurence Prusak

The Wealth of Knowledge: Intellectual Capital and the Twenty-first Century Organization

Thomas A. Stewart

The knowledge-creating company. Creare le dinamiche dell’innovazione Nonaka Ikujiro; Takeuchi Hirotaka - 1997 - Editore Guerini e Associati

L’ organizzazione basata sulla conoscenza. Verso l'applicazione del knowledge management in azienda Iacono Giuseppe - Franco Angeli Collana Azienda moderna - 2000

Conoscenza e gestione del capitale umano: le learning organization Franco Angeli Collana

Economia e tecnologia - 1996

The Knowledge Evolution, Expanding Organizational Intelligence Verna Allee

Knowledge in Organizations L. Prusak - Prusak, Chief Knowledge Officer in Ibm
2.3 - Tempistica

| ORI | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
|-----|---|---|---|---|---|---|---|---|---|----|
| | | | | | | | | | | |
| OR2 | 2 | | | | | | | | | |
| | | | | | | | | | | |
| OR3 | 3 | | | | | | | | | |
| | | | | | | | | | | |
| OR4 | 4 | | | | | | | | | |
| | | | | | | | | | | |
| OR5 | 5 | | | | | | | | | |
| | | | | | | | | | | |
| OR6 | 6 | | | | | | | | | |
| | | | | | | | | | | |
| OR7 | 7 | | | | | | | | | |

Tabella 17 – Diagramma di Gantt
3 - Centro di ricerca (non applicabile al presente progetto)
4 – Costi ammissibili
Di seguito si riportano le tabelle dei costi ammissibili, espressi in migliaia di euro, redatte sia per la Società Consortile (tabella dei costi generale), sia per ogni singolo socio che opererà sul progetto.

TABELLA COSTI GENERALE

<table>
<thead>
<tr>
<th></th>
<th>RICERCA INDUSTRIALE</th>
<th>SVILUPPO PRECOMPETITIVO</th>
<th>Tot. Generale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personale</td>
<td>4.118,03</td>
<td>4.118,03</td>
<td>2.116,87</td>
</tr>
<tr>
<td>Spese generali</td>
<td>2.470,82</td>
<td>2.470,82</td>
<td>1.270,12</td>
</tr>
<tr>
<td>Attrezzature</td>
<td>784,77</td>
<td>784,77</td>
<td>799,77</td>
</tr>
<tr>
<td>Consulenze</td>
<td>320,00</td>
<td>320,00</td>
<td>250,00</td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td>80,39</td>
<td>80,39</td>
<td>20,00</td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>7.774,00</td>
<td>7.774,00</td>
<td>4.456,76</td>
</tr>
<tr>
<td></td>
<td>RICERCA INDUSTRIALE</td>
<td>SVILUPPO PRECOMPETITIVO</td>
<td>Tot. Generale</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Personale</td>
<td>320,63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spese generali</td>
<td>192,38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>513,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABELLA COSTI UNIVERSITA’ DEGLI STUDI DI COSENZA

<table>
<thead>
<tr>
<th></th>
<th>RICERCA INDUSTRIALE</th>
<th>SVILUPPO PRECOMPETITIVO</th>
<th>Tot. Generale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personale</td>
<td>817,19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spese generali</td>
<td>490,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td>20,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>1.327,50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) Investimenti detraibili.
TABELLA COSTI UNIVERSITÀ DEGLI STUDI MAGNA GRAECIA DI CATANZARO

<table>
<thead>
<tr>
<th></th>
<th>RICERCA INDUSTRIALE</th>
<th>SVILUPPO PRECOMPETITIVO</th>
<th>Tot. Generale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El. a)</td>
<td>El. c)</td>
<td>Non El.</td>
</tr>
<tr>
<td>Personale</td>
<td>102,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spese generali</td>
<td>61,41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>163,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RICERCA INDUSTRIALE</td>
<td>SVILUPPO PRECOMPETITIVO</td>
<td>Tot. Generale</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>El. a)</td>
<td>El. c)</td>
<td>Extra U.E.</td>
</tr>
<tr>
<td>Personale</td>
<td>17,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spese generali</td>
<td>10,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>28,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RICERCA INDUSTRIALE</td>
<td>SVILUPPO PRECOMPETITIVO</td>
<td>Tot.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Personale</td>
<td>628,13</td>
<td>628,13</td>
<td>675,00</td>
</tr>
<tr>
<td>Spese generali</td>
<td>376,88</td>
<td>376,88</td>
<td>405,00</td>
</tr>
<tr>
<td>Attrezzature</td>
<td>230,85</td>
<td>230,85</td>
<td>230,85</td>
</tr>
<tr>
<td>Consulenze</td>
<td>300,00</td>
<td>300,00</td>
<td>300,00</td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>1.535,85</td>
<td>1.535,85</td>
<td>1.310,85</td>
</tr>
</tbody>
</table>
TABELLA COSTI TEBAID - CONSORZIO PER LA RICERCA E LE APPLICAZIONI DELLE TECNOLOGIE BIOOMEDICHE AVANZATE IN CALABRIA

<table>
<thead>
<tr>
<th>RICERCA INDUSTRIALE</th>
<th>SVILUPPO PRECOMPETITIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personale</td>
<td>51,63</td>
</tr>
<tr>
<td>Spese generali</td>
<td>30,98</td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>82,60</td>
</tr>
</tbody>
</table>
TABELLA COSTI DEMETRA S.P.A.

<table>
<thead>
<tr>
<th></th>
<th>El. a)</th>
<th>El. c)</th>
<th>Extra U.E.</th>
<th>TOT</th>
<th>El. a)</th>
<th>El. c)</th>
<th>Extra U.E.</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTALE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personale</td>
<td>143,75</td>
<td></td>
<td></td>
<td>143,75</td>
<td></td>
<td></td>
<td></td>
<td>18,75</td>
</tr>
<tr>
<td>Spese generali</td>
<td>86,25</td>
<td></td>
<td></td>
<td>86,25</td>
<td></td>
<td></td>
<td></td>
<td>11,25</td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>230,00</td>
<td>30,00</td>
<td></td>
<td>30,00</td>
<td>260,00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totale Generale
TABELLA COSTI FIP INDUSTRIALE S.P.A

<table>
<thead>
<tr>
<th></th>
<th>RICERCA INDUSTRIALE</th>
<th>SVILUPPO PRECOMPETITIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spese generali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>100,00</td>
<td></td>
</tr>
</tbody>
</table>
TABELLA COSTI ID TECHNOLOGY S.R.L.:

<table>
<thead>
<tr>
<th></th>
<th>RICERCA INDUSTRIALE</th>
<th>SVILUPPO PRECOMPETITIVO</th>
<th>Tot. Generale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personale</td>
<td>143,75</td>
<td>143,75</td>
<td>143,75</td>
</tr>
<tr>
<td>Spese generali</td>
<td>86,25</td>
<td>86,25</td>
<td>86,25</td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>230,00</td>
<td>230,00</td>
<td>230,00</td>
</tr>
</tbody>
</table>
TABELLA COSTI INFOBYTE S.P.A.

<table>
<thead>
<tr>
<th></th>
<th>RICERCA INDUSTRIALE</th>
<th>SVILUPPO PRECOMPETITIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personale</td>
<td>1.345,00</td>
<td>1.345,00</td>
</tr>
<tr>
<td>Spese generali</td>
<td>807,00</td>
<td></td>
</tr>
<tr>
<td>Attrezzature</td>
<td>400,31</td>
<td>400,31</td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td>200,00</td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>2.552,31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RICERCA INDUSTRIALE</td>
<td>SVILUPPO PRECOMPETITIVO</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Personale</td>
<td>95,00</td>
<td></td>
</tr>
<tr>
<td>Spese generali</td>
<td>57,00</td>
<td></td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>152,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RICERCA INDUSTRIALE</td>
<td>SVILUPPO PRECOMPETITIVO</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Personale</td>
<td>156,25</td>
<td>156,25</td>
</tr>
<tr>
<td>Spese generali</td>
<td>93,75</td>
<td>93,75</td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>250,00</td>
<td>250,00</td>
</tr>
</tbody>
</table>
TABELLA COSTI NAUTILUS SOCIETÀ COOPERATIVA

<table>
<thead>
<tr>
<th></th>
<th>RICERCA INDUSTRIALE</th>
<th>SVILUPPO PRECOMPETITIVO</th>
<th>Tot. Generale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personale</td>
<td>128,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spese generali</td>
<td>76,88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td>80,39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>285,39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICERCA INDUSTRIALE</td>
<td>SVILUPPO PRECOMPETITIVO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personale</td>
<td>168,75</td>
<td>168,75</td>
<td>120,00</td>
</tr>
<tr>
<td>Spese generali</td>
<td>101,25</td>
<td>101,25</td>
<td>72,00</td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>423,62</td>
<td>423,62</td>
<td>345,62</td>
</tr>
</tbody>
</table>
TABELLA COSTI TECNIMP S.R.L.

<table>
<thead>
<tr>
<th></th>
<th>RICERCA INDUSTRIALE</th>
<th>SVILUPPO PRECOMPETITIVO</th>
<th>Tot. Generale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spese generali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attrezzature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulenze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prestazioni di terzi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beni immateriali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperi (da detrarre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotale (altri costi del progetto)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investimenti (*)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>153,85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 - Verifica dell’esito del progetto di ricerca

5.1 - Verifica finale

5.1.1 - Risultati disponibili a fine attività

L’esito della ricerca verrà valutato sulla base del raggiungimento degli obiettivi prefissati. La tabella seguente illustra in dettaglio i risultati da raggiungere per ciascuna delle attività previste.

<table>
<thead>
<tr>
<th>OR</th>
<th>Attività</th>
<th>Risultati</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1 Report con la definizione delle tecniche più idonee all’individuazione dei beni archeologici sommersi; banca dati dei rilievi effettuati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 Report con la definizione delle tecniche più idonee all’individuazione delle cave; banca dati dei rilievi effettuati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Report con la progettazione del sw per la rilevazione di anomalie e del sw per la gestione e l’organizzazione dei dati di campo subito dopo l’effettuazione dei rilievi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 Prototipo di sistema sw per la rilevazione di anomalie e per la gestione e l’organizzazione dei dati di campo subito dopo l’effettuazione dei rilievi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 Report descrittivo degli studi sulle tecnologie del Reverse Engineering per il rilievo subacqueo; Report descrittivo dell’attività di progettazione dello scanner 3D subacqueo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6 Prototipo dello scanner 3D subacqueo; Report descrittivo dell’attività sperimentale dello scanner 3D subacqueo; Report con i risultati e le performance del prototipo scanner 3D subacqueo in termini di precisione geometrica, resistenza alla pressione, durata delle batterie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7 Report relativo al protocollo di comunicazione ed agli algoritmi di compressione; Prototipo sistema SW di supporto alla comunicazione</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.1 Motore informatico di supporto alla comunità degli intervenenti MESSIAH di ricerca e di previsione basato integrato a modello knownedged based</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Prototipo sw di Pianificazione</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Prototipo SW di regole comportamentali</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 Report Tecnico Ed SW di interscambio dati</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.1 Prototipo di micro scanner laser 3D; Prototipi di mirror less laser organici con capacità di emissione su tutto lo spettro visibile; Report sul rilievo e la documentazione dei reperti archeologici subacquei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2 Report sulla caratterizzazione dei reperti, ottenuta con indagini conoscitive di tipo sia distruttivo che non distruttivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3 Report sulle conoscenze specifiche ottenute sulle ceramiche, mediante applicazione di tecniche di archeometria; Base dati per la memorizzazione delle composizioni di oggetti di provenienza certa e per la memorizzazione di dati strumentali; Prototipo sw per il supporto alle attività di indagine archeometriche;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4 Reperti in lapideo naturale o artificiale, puliti e protetti/consolidati con sistemi innovativi; Report sulla messa a punto e sulla sperimentazione di nuovi sistemi di pulitura e di protezione/consolidamento sui reperti provenienti da archeologia subacquea</td>
<td></td>
</tr>
</tbody>
</table>
CI CULTURA E INNOVAZIONE S.C.a R.L.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Prototipo della camera Termo/Ultrasonica/Chemio/Barica (TUCHEB); Manuale d’uso della camera; Reperti in lapideo naturale o artificiale, puliti e protetti/consolidati all’interno della camera TUCHEB</td>
</tr>
<tr>
<td>3.6</td>
<td>Report sulle analisi microclimatiche e sullo studio di ottimizzazione dei parametri ambientali al fine della migliore musealizzazione dei reperti</td>
</tr>
<tr>
<td>3.7</td>
<td>Report analisi microclimatica. Prototipo di una teca espositiva per la conservazione dei reperti suscettibili di degrado all’esposizione negli ambienti indoor.</td>
</tr>
<tr>
<td>3.8</td>
<td>Tecnologie per l’inserimento di isolatori sismici in edifici esistenti, in particolare edifici storici; Dispositivi antisismici per l’isolamento sismico di beni museali (singoli beni museali di grandi dimensioni, ad es. statue, o teche contenenti beni di piccole dimensioni).</td>
</tr>
<tr>
<td>4.1</td>
<td>Relazione Tecnica sullo stato dell’Arte delle tecnologie di sistemi di visione; Nota Tecnica con il progetto della Cabina di Regia; Nota Tecnica con il progetto della Sala Visione</td>
</tr>
<tr>
<td>4.2</td>
<td>Moduli SW per l’interfacciamento real-time con il campo</td>
</tr>
<tr>
<td>4.3</td>
<td>Moduli SW per la gestione della Cabina di rega</td>
</tr>
<tr>
<td>4.4</td>
<td>DB Multimediale popolato con le immagini video indicizzate</td>
</tr>
<tr>
<td>4.5</td>
<td>Moduli SW per la gestione della generazione di contenuti; Prototipi di prodotti derivati fruibili da differenti piattaforme</td>
</tr>
<tr>
<td>5.1</td>
<td>Rapporto tecnico contenente il quadro di riferimento della rappresentazione del patrimonio archeologico sommerso, dei beni culturali e artistici in Italia; Rapporto tecnico contenente la definizione dei Local Knowledge Base; Rapporto Tecnico contenente lo schema concettuale del catalogo integrato.</td>
</tr>
<tr>
<td>5.2</td>
<td>Rapporto tecnico contenente la definizione delle tecniche di integrazione della conoscenza contenuta nelle Local Knowledge Base; Rapporto tecnico contenente il progetto del Knowledge Warehouse e del modulo Integration Engine; Software Implementazione modulo Integration Engine.</td>
</tr>
<tr>
<td>5.3</td>
<td>Rapporto tecnico contenente la definizione delle ontologie per la rappresentazione del patrimonio archeologico sommerso e del suo inquadramento storico-artistico; Rapporto tecnico contenente la definizione del formalismo di rappresentazione delle ontologie; Motore per la rappresentazione delle ontologie ed il reasoning.</td>
</tr>
<tr>
<td>5.4</td>
<td>Rapporto tecnico sui modelli per i tipi descrittori; Software per la gestione e l’accesso alla base documentale.</td>
</tr>
<tr>
<td>5.5</td>
<td>Rapporto tecnico contenente la definizione delle tecniche di wrapping; Rapporto tecnico contenente il progetto del modulo wrapper; Software Implementazione modulo wapper; Sistema di integrazione estensionale basati su bisimulazione.</td>
</tr>
<tr>
<td>5.6</td>
<td>Rapporto tecnico sull’estensione del livello delle categorie dell’ontologia per la rappresentazione di oggetti multimediai.</td>
</tr>
<tr>
<td>5.7</td>
<td>Rapporto tecnico sulla definizione delle regole per l’analisi logistica, economica e per il monitoraggio; Software Implementazione modulo CAD.</td>
</tr>
<tr>
<td>5.8</td>
<td>Software che implementa le primitive per l’accesso alle risorse ontologiche.</td>
</tr>
<tr>
<td>5.9</td>
<td>Prototipo Software integrato.</td>
</tr>
</tbody>
</table>
5.1.2 - **Modalità con cui sarà verificabile l’esito dell’intera ricerca**

Di seguito, per ciascun OR saranno indicate le modalità di verifica dei risultati da raggiungere.

5.1.2.1 - **Misurazione dei risultati di OR1**

Il principale risultato che si otterrà con l’OR1 riguarderà la riduzione dei tempi e dei costi per l’individuazione dei reperti archeologici rispetto all’utilizzo delle indagini attualmente in uso ed in particolare:

- a livello produttivo ci si attende una riduzione nei tempi di ricerca dei siti archeologici comprese le cave di almeno il 30%, ed un miglioramento in termini temporali (riduzione dei tempi del 50%) e qualitativi (annullamento di possibili errori) nei processi di elaborazione e catalogazione dei dati raccolti;

- a livello economico sarà quindi possibile abbassare i costi per la ricerca in mare dei siti archeologici sommersi con conseguente possibilità di incrementare le ricerche, i ritrovamenti e quindi la conservazione e valorizzazione dei beni archeologici.

La valutazione dell’esito della realizzazione del prototipo scanner 3D sarà effettuabile attraverso un’apposita attività di sperimentazione e testing che sarà suddivisa in due fasi.

La prima fase sarà realizzata in vasca simulando diversi valori di torbidità dell’acqua con la presenza di particelle in sospensione. Effettuando delle scansioni su oggetti di geometria nota sarà possibile rilevare l’errore medio commesso e il suo variare al crescere del valore di torbidità espresso in ppm (parti per milione). Ci si attende un errore geometrico dell’ordine di 1-5 mm con valori medi di torbidità.
La seconda parte della sperimentazione consisterà nel testare lo scanner in mare su un sito o un reperto archeologico, valutando, mediante appositi questionari da sottoporre ai sommozzatori che utilizzeranno lo scanner, l’usabilità e l’ergonomia dello scanner.

5.1.2.2 - Misurazione dei risultati di OR2

Critéri di verifica per i risultati specifici del progetto
La verifica dei risultati riguarderà sia le tecniche proposte che il software sviluppato. Più in particolare le verifiche riguarderanno:

- Metodologie e modelli di dati: verifica di esistenza e di applicazione degli stessi nei contesti pilota individuati e per i tipi di media da supportare;
- Prototipi software: esito positivo delle sperimentazioni nelle aree scelte.

Metodologie di verifica
La metodologia che verrà utilizzata per lo sviluppo del sistema trarrà beneficio dalle scelte di progetto, relativamente al linguaggio di modellazione - standard UML - e al processori sviluppo dei prototipo - Unified Process.

UML è un linguaggio per la specifica, la visualizzazione e la costruzione degli artefatti dei sistemi software, mentre UP è un processo di Ingegnerizzazione del software che permette di disciplinare l’assegnazione di compiti e responsabilità all’interno dell’organizzazione di sviluppo, allo scopo di favorire la produzione di prodotti di qualità che soddisfino i bisogni degli utenti finali con tempi e costi prediciibili.

Nel contesto dello Unified Process, è previsto un processo di sviluppo del software secondo un ciclo di vita ben definito, articolato in quattro distinte fasi, note come:

- Fase di ideazione (Inception)
- Fase di elaborazione (Elaboration)
- Fase di costruzione (Construction)
- Fase di transizione (Transition)

Ciascuna fase ha un distinto obiettivo e si conclude con una milestone principale – un momento nel quale una particolare decisione critica deve essere presa, a seguito della quale si ritiene raggiunto un certo obiettivo; ad ogni milestone saranno quindi condotte attività di verifica, per garantire che i risultati ottenuti soddisfino i requisiti iniziali. Inoltre, internamente ad ogni fase sono previste milestone secondarie che consentono una verifica ancora più puntuale sull’andamento del progetto.

Nella fase di ideazione, attualmente in corso, si sta specificando la visione del prodotto finale e le possibilità di business che esso genera, definendo la portata e i confini del progetto; alla fine di questa fase c’è la prima importante milestone del progetto, la milestone degli obiettivi dello sviluppo. I criteri di verifica sono:

- la concordanza sulla definizione degli obiettivi e sulla stima dei costi e della schedulazione;
- la comprensione dei requisiti come evidenza della bontà dei casi d’uso principali;
- la validazione delle stime dei costi e della schedulazione, delle priorità, dei rischi e del processo di sviluppo.
Nella fase di elaborazione si avrà la specifica di dettaglio delle funzionalità e una prima progettazione dell’architettura del sistema; alla fine di questa fase c’è la seconda importante milestone del progetto, la milestone architetturale (Lifecycle Architecture Milestone), nella quale si deve esaminare in dettaglio la portata e gli obiettivi del sistema, le scelte architetturali e la risoluzione dei maggiori rischi. La verifica riguarderà in particolare:

- la validazione delle specifiche funzionali, individuate in forma quasi definitiva;
- la validazione dello schema architetturale, proposto in forma di bozza;
- la validazione di un primo prototipo eseguibile;
- il controllo della congruità delle stime di impegno previste e del piano di progetto.

Nella fase di costruzione si procederà alla realizzazione del sistema con l’implementazione dei singoli casi d’uso. Alla fine di questa fase c’è la terza milestone principale del progetto (Initial Operational Capability Milestone), nella quale si decide se il sistema ha raggiunto un grado di evoluzione accettabile. La verifica riguarderà in particolare:

- la validazione delle specifiche tecniche consolidate;
- la validazione del sistema nella release raggiunta, la quale, in relazione agli obiettivi progettuali, si fermerà allo stato prototipale di dimostratore dell’effettiva efficacia delle idee progettuali, delle ipotesi di lavoro e dei risultati di ricerca (comprendendo tra questi: nuovi modelli di rappresentazione e di inferenza e algoritmi innovativi);
- il controllo della congruità delle stime di impegno previste e del piano di progetto.

La fase di transizione si focalizza in genere sulle attività connesse al rilascio del sistema all’utente. Tipicamente tale fase include diverse iterazioni che riguardano correzione di errori, test di dettaglio delle funzionalità, beta release, release disponibili generali così come versioni di bug-fix (patch) e migliorative. Un considerevole sforzo è speso nella produzione di documentazione orientata all’utente, nella formazione degli utenti, nel supporto degli utenti nella fase iniziale di uso del prodotto e nel recupero dei riscontri da parte degli utenti. In questo progetto sono considerate solamente attività di Ricerca Industriale e di Sviluppo Precompetitivo, pertanto la fase di transizione ha un peso relativamente marginale rispetto alla norma. Relativamente a questa fase la verifica riguarderà in particolare:

- il corretto completamento delle attività di test del sistema;
- i risultati della sperimentazione su campioni di utenti.

L’adozione dello Unified Process come processo di sviluppo presenta notevoli vantaggi in termini di controllo dei rischi rispetto al tradizionale processo a cascata, il quale si basa su una rigida sequenza di passi corrispondenti alle attività di analisi dei requisiti, di progettazione, di realizzazione e di integrazione e test del sistema; queste attività nello Unified Process vengono invece considerate ortogonal alle fasi di sviluppo, e vengono quindi svolte in tutte le fasi (anche se con un’enfasi differente tra una fase e l’altra). Un approccio di questo genere consente una notevole riduzione dei rischi in quanto le verifiche concrete possono essere effettuate durante tutte le fasi dello sviluppo e non solo
alla fine del progetto, quando le correzioni necessarie per soddisfare requisiti che non erano stati inizialmente identificati possono essere estremamente costose se non impossibili.

In particolare è fondamentale la possibilità che offre l’UP di gestire l’attività di analisi dei requisiti per raffinamenti successivi nelle varie fasi di sviluppo, in quanto da un lato non è in generale possibile chiarire tutti i requisiti del sistema nella fase iniziale del progetto, senza verifiche concrete basate sulla presentazione di prototipi, e dall’altro è estremamente comune che i requisiti iniziali vengano modificati nel corso del progetto.

Per quanto riguarda l’attività di test, il piano di test prodotto a partire dalle specifiche funzionali del sistema permetterà di definire i casi di test che devono essere superati dalle varie release del software al fine di considerare tale software rilasciabile. Per ogni sessione di test che verrà prevista per il progetto verrà redatto un rapporto di test che descriverà i risultati delle attività di test condotte. Questo documento sintetizzerà i risultati dei test eseguiti e fornirà indicazioni circa la qualità del prodotto realizzato.

Nel progetto in questione verranno inoltre verificate le performance richieste in sede di definizione delle specifiche funzionali e verranno condotte sessioni di sperimentazione sul campo al fine di offrire una sistema di valutazione delle release ottenute. Il risultato della sperimentazione sarà documentato in un insieme di rapporti che serviranno a mettere in luce le caratteristiche salienti dei programmi.

Infine, per quanto riguarda la gestione della configurazione tutto il processo di sviluppo del progetto sarà condotto adottando un sistema di gestione della qualità conforme alle norme ISO 9001. Per il progetto verrà redatto un piano di qualità e verranno svolte attività di verifica del rispetto del piano previsto.

In particolare, come attività di verifica è prevista una revisione della documentazione prodotta nel progetto, per garantire che ogni documento:

• rispetti gli standard definiti;
• rispetti le regole e le indicazioni descritte nel Piano di Qualità di Progetto;
• contenga informazioni chiare e corrette rispetto sia alle informazioni di partenza sia a quelle contenute in tutti gli altri documenti prodotti nelle fasi previste per il progetto.

Al fine di permettere una adeguata verifica dei risultati e dell’andamento dei progetti verrà messa a disposizione la documentazione tecnica completa del progetto così come prevista dalla normativa interna di qualità e dei cicli di vita dei progetti software. In questa documentazione sono presenti gli esiti delle singole attività e i rapporti di verifica da parte del personale tecnico della società scrivente, del responsabile interno della qualità e di eventuali ispezioni dell’ente certificatore.

In sintesi i criteri di verifica possono essere individuati nei seguenti punti:

• Adozione di una metodologia di sviluppo basata su UML e UP;
• Verifica dei risultati raggiunti ad ogni milestone principale di progetto;
• Redazione di Piano di Test e verifica, al termine, delle performance tecniche;
• Adozione di un modello di qualità conforme a norme ISO 9001;
• Redazione di piano di qualità e verifica, al termine, della qualità osservata;
• Valutazione dei risultati ottenuti mediante sperimentazione sul campo;
• Documentazione tecnica completa degli esiti di fasi e di attività.
5.1.2.3 - Misurazione dei risultati di OR3

La verifica del positivo esito della ricerca sarà costituita anzitutto dalla verifica della funzionalità delle due apparecchiature realizzate e del prototipo di teca. Più in dettaglio per lo scanner miniaturizzato le verifiche saranno le seguenti:

- Il micro laser dovrà emettere almeno 30 lunghezze d’onda nell’intervallo 400-800 nm con potenze nell’intervallo 1-100 W.
- Il micro-scanner dovrà poter indagare cavità con diametro dell’ordine del centimetro.

Per quanto riguarda i sistemi innovativi sperimentati, la loro bontà sarà verificata tramite la validazione sui reperti della efficacia e durabilità nel tempo dei trattamenti conservativi adottati.

Per quanto riguarda la camera TUCHEB la verifica della sua funzionalità consisterà nella verifica di: a) raggiungimento al suo interno di escursioni termiche da temperatura ambiente ad almeno 100 °C in condizione di riempimento della camera con acqua; b) escursione del vuoto almeno fino a 10-3 torr; corretta misura da parte dei parametri operazionali da parte di tutti i sensori inseriti; dimostrazione della capacità di eliminazione di incrostazioni, di natura inorganica, organica e biologica da manufatti archeologici ritrovati in mare.

La valutazione dell’esito della ricerca sul prototipo di teca sarà effettuabile attraverso un’apposita attività di sperimentazione e testing che sarà suddivisa in due fasi.

La prima fase sarà realizzata testando il funzionamento della teca con appositi provini verificando al variare delle condizioni climatiche dell’ambiente esterno il comportamento del microclima interno controllato allo scopo di tarare meglio i parametri funzionali e prestazionali del circuito aeraulico e del sistema di controllo.

La seconda parte della sperimentazione consisterà nel testare la teca in un ambito museale o espositivo reale per meglio verificare le problematiche rilevabili sul campo. Il test della teca sarà effettuato attraverso il monitoraggio del microclima interno ed esterno tramite centralina microclimatica in grado di registrare per un lungo periodo tutti i dati termoigrometrici.

Un controllo aggiuntivo non intrusivo delle condizioni del reperto sarà effettuato tramite camera termografica (NEC TH 7100) in grado di apprezzare variazioni di temperatura di 0.1 °C.

Relativamente ai dispositivi di protezione antisismici questi dovranno essere in grado di garantire la riduzione dell’accelerazione orizzontale trasmessa agli oggetti d’arte a valori inferiori a 0.1 g, per sismi caratterizzati da un valore di accelerazione orizzontale di ancoraggio dello spettro di risposta elastico minore od uguale a 0.35 g, corrispondente alla zona sismica 1 (zona di massima sismicità in Italia).

Con il risultato verranno resi disponibili i manuali d’uso delle nuove apparecchiature.

Verrà inoltre fornita una serie di rapporti tecnici che descrivono l’attività scientifica svolta e che permettono di valutare il grado di ottimizzazione raggiunto in termini di
caratterizzazione e di trattamento e conservazione dei reperti provenienti da archeologia subacquea:

- Rilievo e documentazione dei reperti archeologici subacquei
- Indagini conoscitive eseguite sui reperti
- Tecniche di archeometria applicate ai reperti ceramicì
- Sistemi di pulitura e rimozione dei biodeteriogeni
- Applicazione e valutazione di trattamenti protettivi/consolidanti
- Trattamenti eseguiti nella camera TUCHEB
- Analisi microclimatiche e musealizzazione dei reperti
- Attività sperimentale realizzata per la teca, con i risultati e performance del prototipo.
- Attività sperimentale realizzata per i dispositivi di protezione antisismica, con i risultati e performance del prototipo.

5.1.2.4 - Misurazione dei risultati di OR4
I principali parametri che concorrono a determinare le prestazioni generali delle procedure sviluppate nell’OR4 sono:

- Fluidità Real-Time di tutte le ricostruzioni grafiche 3D;
- Sincronizzazione Real-Time dei segnali video live con i modelli sintetici;
- Efficacia degli algoritmi di compressione utilizzati nei collegamenti terra-mare live.

La verifica dei risultati oggetto di questo OR sarà effettuata attraverso l’integrazione delle singole componenti SW realizzate applicate ed un caso di test live:

- Realizzazione di un nodo di acquisizione istallato su un sito prototipale “Area Marina Protetta di Crotone” che dimostra la fase real time del sistema di gestione e di monitor and control;
- Realizzazione di almeno un caso di postprocessing a partire da dati e sensori di campo al fine di integrare il sistema di monitor e control con il sistema di pianificazione e validarne la compatibilità dei risultati
- Realizzazione della banca dati di supporto al centro di disseminazione e presentazione dei dati;
- Individuazione di almeno un caso completo di fruizione real time con controllo remoto del sistema e di valorizzazione dei dati.

5.1.2.5 - Misurazione dei risultati di OR5
I risultati previsti nell’OR5 in termini di modelli, metodologie e prototipi software saranno valutati e misurati nelle varie fasi del ciclo di vita dei singoli oggetti prodotti tramite le metodiche previste dall’UP (Unified Process), un processo di Ingegnerizzazione del software che permette di disciplinare l’assegnazione di compiti e responsabilità all’interno dell’organizzazione di sviluppo, allo scopo di favorire la produzione di prodotti di qualità che soddisfino i bisogni degli utenti finali con tempi e costi predicabili. Tale metodologia prevede per i risultati (anche intermedi, applicabili in implementazioni per prototipi) la
produzione di un piano dei TEST e dei relativi moduli di esecuzione che consentiranno una misurazione della bontà ed efficienza funzionale dei risultati.
Ad affiancare e completare questa metodologia sarà predisposto un Protocollo di valutazione per la validazione dei risultati complessivi ottenuti la cui bozza è descritta nella tabella che segue.
La prima colonna stabilisce a priori le risorse da produrre soltanto a scopo di validazione dei risultati; tali risorse non potranno essere quindi impiegate nell’ambito dell’elaborazione dei risultati stessi; la seconda colonna stabilisce quali azioni vadano compiute a scopo di valutazione e la terza quale esito di tali azioni debba essere considerata un successo.

<table>
<thead>
<tr>
<th>#</th>
<th>Risorse da considerare per la validazione</th>
<th>Attività da eseguire sulle risorse di validazione</th>
<th>Esito da considerare di successo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.5.1</td>
<td>Almeno un sistema informativo di catalogo non utilizzato per la messa a punto dello schema</td>
<td>Specifica LAV del sistema</td>
<td>Accesso alle informazioni rilevanti sotto il profilo ontologico</td>
</tr>
<tr>
<td>A.5.2</td>
<td>Almeno un contesto storico-culturale descritto informalmente non utilizzato per la messa a punto dell’ontologia</td>
<td>Rappresentazione del contesto mediante le categorie identificate</td>
<td>Efficacia nella rappresentazione</td>
</tr>
<tr>
<td>A.5.3</td>
<td>Almeno una base documentale non utilizzata per la messa a punto del sistema di accesso</td>
<td>Applicazione della metodologia di accesso alla base documentale</td>
<td>Trattabilità computazionale delle tecniche di ragionamento</td>
</tr>
<tr>
<td>A.5.4</td>
<td>Repertorio di rappresentazioni multimediali completo sotto il profilo dei media e delle possibili caratterizzazioni dei punti di vista non utilizzato per la messa a punto del sistema</td>
<td>Integrazione del repertorio nell’ontologia</td>
<td>Efficacia dell’integrazione sotto il profilo della manipolazione degli oggetti</td>
</tr>
<tr>
<td>A.5.5</td>
<td>Specifica informale di un percorso di valorizzazione non utilizzato per la messa a punto del sistema</td>
<td>Specifica formale del percorso</td>
<td>Efficacia nella rappresentazione formale</td>
</tr>
</tbody>
</table>

Tabella 19 - Criteri di validazione

Tramite un opportuno Criterio di assegnazione del punteggio si considererà quanto l’esito della ricerca risponda ai fabbisogni di innovazione identificati per il progetto.

5.1.2.6 - Misurazione dei risultati di OR6
L’implementazione di un’adeguata metodologia e infrastruttura di verifica e test delle fasi operative del sistema rappresenta un passo indispensabile per la misura quantitativa del “successo” dell’iniziativa da parte della comunità scientifica. La verifica verrà realizzata mediante un approccio misto basato sia su dati revisionali di comportamento (dati simulati in assenza di dati operativi), che direttamente mediante la realizzazione di fasi operative
prima dissociate (2 OR alla volta) e poi più complesse aggiunta di un successivo OR etc… fino ad ottenere lo scenario complessivo di funzionamento.

Questa tecnica prevede lo sviluppo di STUBS (sistemi SW di valutazione di macro sistemi) che simulano i singoli OR nella loro modalità di interfacciamento e di produzione di dati (dati di test simulati) e quindi consentono di entrare in fase operativa dopo aver verificato i singoli OR in maniera accoppiata e riducendo così il rischio di trascinamenti di errori o procedure errate in maniera trasversale nell’intero processo di valutazione sperimentale.

Nei casi di studio selezionati verrà condotta la sperimentazione integrata, seguendo le fasi della metodologia di riferimento individuata, ovvero: ricognizione, prospezione, rinvenimento, rilevamento, protezione, recupero, tutela, monitoraggio e valorizzazione, restauro, manutenzione, conservazione, gestione, fruizione e valorizzazione.

Nella campagna sperimentale, saranno svolte le attività di sopralluogo nei siti dei casi di studio individuati al fine di focalizzare le caratteristiche del patrimonio culturale sommerso. A tal fine saranno coinvolti gli attori del territorio come la sovrintendenza, la provincia in modo da svolgere tutte le varie istanze previste dalle attuali leggi vigenti.

5.1.2.7 - Misurazione dei risultati di OR

La verifica dei presupposti di ricerca, dei prodotti e risultati intermedi e dei risultati finali sarà condotta secondo le procedure di validazione internazionale della ricerca a livello internazionale, delle metodiche codificate dal MIUR e dalla CRUI per le strutture universitarie.
6 - Progetto internazionale (non applicabile al presente progetto)

7 - Scenario di riferimento, obiettivi, benefici attesi (non applicabile al presente progetto)
Seconda parte

8 – Elementi per la valutazione dell’effetto incentivante dell’intervento pubblico (non applicabile al presente progetto)
9 – Interesse tecnico-scientifico

Gli studi da effettuare nell’ambito dell’intero progetto, offrono spunti di estremo interesse ed originalità, tali da giustificare il ricorso alla ricerca industriale. L’ambito delle attività di ricerca sarà caratterizzato da problematiche di carattere informatico in ambito archeologico subacqueo, non potendo però prescindere dal trattare argomentazioni di carattere specificatamente storico-culturali, al fine di contribuire così allo sviluppo di nuove conoscenze nel settore dell’archeologia, con particolare riferimento a quella subacquea. Di seguito si evidenziano, OR per OR gli elementi di novità e l’utilizzo di tali elementi per accrescere la competitività del soggetto proponente.

9.1 – Novità e originalità delle conoscenze acquisibili

Di seguito si riportano le novità e originalità delle conoscenze acquisibili per ciascun OR del progetto.

OR1
L’identificazione, il posizionamento, la descrizione e la documentazione dei siti archeologici sommersi nonché delle cave (con tutte le indicazioni specifiche – tecniche che forniscono sulla subsidenza ed innalzamento del mare) è un’area della ricerca scientifica relativamente nuova ed ancora solo parzialmente esplorata. Sono due i principali elementi di originalità:

– sviluppare tecniche di rilievo 3D sottomarino. Per quanto riguarda lo sviluppo di tecniche per il rilievo 3D sottomarino e quindi del prototipo di scanner 3D subacqueo occorre evidenziare che sul mercato mondiale non esiste prodotto di questo genere che possa lavorare con una precisione dell’ordine del millimetro e che sia quindi utilizzabile per il rilievo di manufatti di piccole e medie dimensioni come anfore, statue, particolari di imbarcazioni. Il prodotto sarebbe quindi unico nel suo genere e non avrebbe, al momento, nessun concorrente diretto. Inoltre si intende valutare la possibilità di utilizzare una tecnologia ottica a luce strutturata che per la sua flessibilità e per la possibilità di utilizzare diverse lunghezze d’onda si presta bene a questo tipo di sperimentazione.

– sviluppare tecniche di indagine geofisica finalizzate all’archeologia marina. Le indagini archeologiche sono quasi sempre state condotte adattando le metodiche classiche delle indagini alla ricerca archeologica.

OR2
La pianificazione e la progettazione di interventi in siti archeologici sottomarini è una materia al momento gestita in maniera empirica dove spesso la conoscenza degli intervenenti si rimette alle decisioni di un singolo interlocutore presente sul sito e che ha il contatto visivo con il bene archeologico sommerso. Portare questa materia stremante complessa all’interno di una procedura di pianificazione e di progettazione è’ un aspetto estremamente importante ed innovativo.
Ad oggi non esistono sistemi di progettazione e di pianificazione che sappiano supportare le decisioni e che sappiano accrescere la propria conoscenza a partire da banche dati e da esperienze specialistiche eterogenee.

Gli elementi di innovazione ed originalità sono in sintesi riassunti nello sviluppo di un sistema di gestione del territorio sommerso correlato alle banche dati e capace di supportare le decisioni e di accrescere la conoscenza collettiva.

Strumenti e tecnologie che se applicate possono produrre significativi risparmi nei costi intesi anche come ottimizzazione dei tempi di indagine con la massimizzazione dei dati acquisiti e la loro messa a disposizione di un comunità di utenti anch’essa eterogenea nelle conoscenze e nelle competenze.

OR3
Gli elementi di novità ed originalità ottenuti dall’OR 3 sono:

1. lo sviluppo di uno strumento micro scanner laser 3D che permetterà di indagare le cavità centimetriche di oggetti. Gli attuali strumenti per il rilievo di forma consentono di riprodurre con un’elevata accuratezza e ripetibilità le caratteristiche geometriche esterne di oggetti anche complessi. Per questo motivo il loro impiego è in continua crescita: dal Reverse Engineering (RE) per l’analisi della concorrenza al controllo di qualità di prodotti industriali; dalla creazione di modelli da inserire in ambienti creati attraverso la realtà virtuale alla ricostruzione o al restauro di manufatti appartenenti al campo dei beni culturali. Per una così vasta gamma di applicazioni sono stati sviluppati ed adottati sistemi basati su differenti principi di funzionamento (sensori meccanici, ottici, laser) ma una valutazione dei campi di applicabilità di ciascuno non è ancora stata realizzata in maniera univoca. L’ambito di applicazione del micro scanner 3D non si limita ai Beni Culturali, ma può essere esteso, per esempio, anche al campo biomedico. Il livello di innovazione è elevato ed i campi di applicazione ne permettono la collocazione in dispositivi ad alta tecnologia e ad alto valore aggiunto;

2. la definizione di una procedura standardizzata di intervento, che prenda in considerazione sistemi conservativi innovativi (biocidi, agenti per la pulitura e polimeri chimici per il consolidamento/protezione), nonché metodiche precise per la valutazione dei risultati conseguiti dopo ogni fase di intervento, impiegando tecniche di diagnostica anche non distruttiva ottimizzate per queste tipologie specifiche di reperti. Anche le modalità di utilizzo degli agenti di pulitura e di consolidamento verranno riviste in modo che risultino meno invasive e più efficaci; la nuova camera TUCHEB sarà progettata con questa finalità specifica, permettendo di realizzare l’intervento di pulitura minimizzando l’azione di tipo meccanico e ottimizzando il grado di penetrazione dei consolidanti/protettivi grazie all’impiego del vuoto. Questo risultato va a colmare una carenza presente nell’attuale pratica del restauro.

3. In merito alle problematiche connesse all’isolamento sismico degli edifici monumentali e dei beni museali si proporrà l’applicazione di metodologie non propriamente convenzionali che si propongono come una valida alternativa ai metodi classici: infatti, queste tecniche di isolamento, che sono mirate
sostanzialmente a ridurre l'impatto sismico sull'edificio attraverso una riduzione dell'energia in ingresso, consentirebbero di ottenere risultati impensabili con le tecniche tradizionali, aprendo così nuove prospettive anche alla conservazione del ricchissimo patrimonio monumentale nazionale. La tecnica di protezione basata sull'isolamento sismico, che si intende sviluppare, consentirà il superamento dei limiti della progettazione tradizionale attraverso una riduzione del danno ottenuta grazie ad un decremento dell'energia dissipata: prevede, in sostanza, l'impiego di particolari apparecchiature collocate in punti nevralgici della struttura, grazie alle quali una parte dell'energia cinetica ceduta dal sisma viene dissipata o comunque non trasmessa alla struttura.

A integrazione di questi aspetti più innovativi, tutte le informazioni di carattere tecnico e scientifico che emergeranno dal progetto permetteranno una conoscenza più puntuale e approfondita del patrimonio archeologico ritrovabile nei nostri fondali marini, con un dettaglio particolare per la provenienza e datazione dei reperti ceramici, e delle condizioni ottimali da adottare per la loro musealizzazione.

OR4
Gli attuali sistemi di visualizzazione dei dati scientifici che usano tecniche di realtà virtuale e quindi modelli grafici sintetici rappresentano una forte limitazione tecnologica nell’inserimento e la correlazione tra il dato sintetico e quello video live. Difatto i due livelli informativi spesso viaggiano scorretti e l'utente finale non riesce a percepire la sintesi visiva integrata del mondo reale e di quello virtuale.
Per questo aspetto l'OR4 risulterà particolarmente innovativo in quanto l’utilizzo di tecniche di virtual set combinate con il dato live di campo potrà creare la giusta correlazione tra le immagini live e quelle sintetiche o previsionali.
Un altro aspetto di rilievo è dato dalla nuova banca dati video real time intesa come funzione di servizio per dati di repertorio ancora una volta contestualizzati e storicamente referenziati che possono tracciare l’evoluzione storica del sito o del bene anche per le future valutazioni o in caso di interventi similari.
Un ulteriore aspetto innovativo è introdotto dalle funzioni di monitoraggio attivo in mare dove la parte di creazione di nuovi contenuti multicanale insieme alle tecniche live di ripresa di immagini stereografiche rappresentano un forte valore aggiunto per le azioni di divulgazione scientifica e per il largo pubblico interessato al tema (fruizione).
Un’altra sostanziale innovazione introdotta nell'OR4 è in termini di sviluppo tecnologico dei sistemi televisivi la trasmissione di segnali attraverso lo standard digitale costituisce una tappa di capitale importanza. Da un lato, il digitale rappresenta il momento di convergenza tra la televisione, l'informatica e le telecomunicazioni, dall’altro rende l'apparecchio televisivo uno strumento efficace e comodo per l’offerta di servizi interattivi, che si aggiungono così alla tradizionale disponibilità di contenuti televisivi.

OR5
Da un’analisi preliminare si evidenzia che l’offerta informativa in materia di beni culturali ed ambientali calabresi risulta scarsa ed eccessivamente disomogenea e frammentata; numerosissimi sono i casi di applicazioni informative attuate attraverso pagine Web da
parte di comuni, associazioni, enti, musei, soggetti privati ecc. che risultano poco fruibili per i destinatari di tali informazioni. Da qui le necessità di un sistema integrato, capace di rendere facilmente fruibili e gestibili le informazioni sui beni culturali regionali, con particolare riferimento al patrimonio archeologico subacqueo della provincia di Crotone, omogeneizzare i diversi settori e valorizzare quegli ambiti culturali o quelle aree geografiche che in sé costituiscono risorse culturali notevoli. La novità consiste essenzialmente nel raccordare il modello di integrazione con un sistema di riferimento che segnali la copertura di un itinerario culturale. Il tutto sarà supportato da una serie di modelli interpretativi per caratterizzare la rappresentazione multimediale del bene culturale sommerso (il modello interpretativo consentirà di inquadrare un bene come concatenazione di eventi caratterizzati da una serie di beni culturali).

L’enfasi posta sulla ricostruzione di un itinerario tematico che dia valore aggiunto interpretativo alla semplice catalogazione e descrizione di beni culturali è peculiare di questa proposta, in quanto non si persegue il semplice obiettivo di permettere a un utente di accedere a specifiche informazioni elementari di interesse organizzate in una o più basi di dati.

OR6
Nonostante la ricchezza del nostro patrimonio culturale ed il gran numero di gruppi che operano in questo settore, il contributo della comunità scientifica nel campo specifico, per lo più sporadico, è carente sia nel campo delle tecniche di conservazione, sia in appoggio alle attività di ricerca e qualificazione. Ancor più scarsa è la presenza di laboratori o distretti "dedicati", contrariamente a quanto avviene in altri paesi, dove le grandi concentrazioni di beni culturali sono affiancate da strutture tecnico-scientifiche. Caratteristica del patrimonio culturale italiano è di essere distribuito con grande ricchezza su tutto il territorio. Questa diffusione territoriale, se ha reso più difficile la formazione di singole, grandi strutture tecnico-scientifiche in appoggio, si presta ad una forma parzialmente "delocalizzata" di intervento. Ciò richiede forme di aggregazione per coordinare competenze che già operano nel settore e coinvolgere quelle che potenzialmente potrebbero fornire maggior supporto agli sviluppi futuri. In sintesi lo sviluppo di un distretto specializzato non può prescindere dalla sua focalizzazione sull’argomento e dalla sua interdisciplinarità ma soprattutto si misura sulla capacità di aggregare ed integrare competenze e tecnologie all’interno di un quadro sinergico.

Considerando pertanto che l’OR6 rappresenta la fase di integrazione delle tecniche innovative alla base della ricerca industriale che sarà sviluppata negli obiettivi realizzativi precedenti, l’elemento principale di novità dello stesso OR risiede proprio nella definizione e sperimentazione della metodologia dell’intero sistema MESSIAH.

Al momento non esistono soluzioni integrate confrontabili utilizzate dalla concorrenza sia a livello nazionale sia a livello internazionale.

OR7
Le novità e originalità delle conoscenze acquisibili nell’ambito dell’OR 7 sono:
- nuovi modelli cognitivi fondata sulla interdisciplinarietà e l’integrazione delle diverse forme di conoscenza ed orientati ai beni culturali ed archeologici;
- innovazione delle metodologie di certificazione e validazione dei dati e delle informazione a monte ed a valle dei processi aziendali di innovazione e di produzione;
- nuove integrazioni cognitive e tecnologiche per piattaforme complesse orientate ai beni culturali ed archeologici;
- modelli integrati di supporto alle decisioni per i processi di innovazione delle imprese nel comparto dei beni culturali e della comunicazione;
- nuovi algoritmi nella acquisizione, elaborazione, gestione, comunicazione della conoscenza applicata ai beni culturali;
- nuova piattaforma informativa per l’acquisizione di conoscenze orientata alla creazione di imprese innovative nell’ICT.
9.2 - Utilità delle conoscenze acquisibili

Le utilità delle conoscenze acquisibili per innovazioni di prodotto/processo/servizio che accrescono la competitività e favoriscono lo sviluppo della richiedente e del settore di riferimento sono, anche queste, riportate per ciascun OR.

OR1
Le attività di ricerca che si intendono condurre in questo OR sono di estremo interesse sia per la Comunità Scientifica (la letteratura è priva di applicazioni di rilievo in relazione alle procedure di identificazione e posizionamento dei siti archeologici) che per i soggetti coinvolti nel progetto.
Dal punto di vista più prettamente tecnologico il punto di forza è nella realizzazione di una strumentazione che andrà ad integrare le tecnologie attualmente in uso per la ricerca dei beni archeologici sommersi.
Finora si è fatto ampio uso degli scanner 3D per i reperti subaerei mentre non sono mai stati impiegati per il rilievo di reperti sommersi. Le uniche attività di rilievo tridimensionale che vengono condotte sui fondali hanno una risoluzione dell’ordine del centimetro ed impiegano per lo più tecnologie acustiche.
La problematica del rilievo 3D dei fondali marini ha alcuni aspetti in comune con quella della scansione dei reperti e dei relitti ma la scala dimensionale su cui si lavora è di uno o due ordini di grandezza inferiore per cui da un punto di vista tecnologico si dovranno adottare soluzioni diverse e risolvere problematiche differenti.
I risultati dell’attività di sperimentazione rappresenteranno delle preziose informazioni che sono indispensabili per ottenere una corretta calibrazione dello scanner 3D in applicazioni sottomarine. Il know-how che il proponente acquisirà in seguito alla sperimentazione rappresenterà la base di conoscenza indispensabile per un’eventuale successiva fase di sviluppo precompetitivo del prodotto.

OR2
Il principale elemento di utilità dell’OR2 riguarda la conoscenza e la capacità di pianificazione e progettazione degli interventi e delle indagini sui siti sommersi, rendendo disponibili alla comunità scientifica ed al sistema produttivo una serie di informazioni utili ad ottimizzare e specializzare le proprie procedure o le proprie dotazioni tecnologiche. Questa sintesi produce un livello di conoscenza e di competitività esportabile in altri contesti simili ma soprattutto un punto di riferimento procedurale in un contesto di rilievo e di interesse mondiale dove lo scambio delle informazioni è uno degli obiettivi di patrimonio globale da conseguire.
L’applicazioni di sistemi knowledge based combinato con sistemi di rappresentazione visiva di facile uso rappresenta anche un altro obiettivo di allargamento della fascia di uso degli utenti ed un avvicinamento ad utenti decisori non specializzati all’analisi di dati complessi in formati troppo tecnici o da addetti ai lavori.

OR3
Lo sviluppo del micro scanner 3D e delle sue componenti principali, micro specchio e micro laser, rappresenta un’opportunità di innovazione importante, sia per il prodotto specifico, sia per ulteriori applicazioni nel campo della strumentazione avanzata più in generale. Si tratta di dispositivi che sia in campo Micro-Opto-Electro-Mechanical System che di Micro Ottica rappresentano lo stato dell’arte della microfabbricazione.

L’ottimizzazione delle tecniche di diagnostica non distruttiva permetterà di ridurre al minimo il numero di campioni da prelevare per effettuare una analisi compositiva e morfologica completa, senza ridurre le informazioni che l’analisi tradizionale può fornire sul reperto.

La definizione di sistemi di pulitura e di protezione specifici per i reperti di provenienza subacquea permetterà da una parte di ridurre i danni causati dall’impiego di mezzi di pulitura meccanici, quali il bisturi, spesso impiegato per rimuovere le spesse concrezioni di origine organica o inorganica che si depositano sui manufatti giacenti nei fondali marini, e dall’altra di evitare gli inestetici effetti che a volte si ottengono effettuando il trattamento di protezione finale con prodotti studiati per altre tipologie di manufatti e che non penetrano adeguatamente nei substrati (ad esempio l’effetto lucido che si ottiene utilizzando alcune resine acriliche commerciali).

Le conoscenze acquisibili con lo sviluppo dei dispositivi antisismici e per la conservazione di materiali sensibili risiede nella possibilità di colmare un gap tecnologico esistente in un settore strategico per la tutela dei Beni Culturali.

OR4

Con l’utilizzo di tecniche di virtual set combinate con il dato live di campo che consentiranno di tracciare la giusta correlazione tra le immagini live e quelle sintetiche o revisionali, frutto di simulazioni scientifiche e di processing accurati, potranno meglio essere gestiti e rappresentati dati scientifici di ogni tipologia e ci si potrà rivolgere al contesto della divulgazione tecnico scientifica in termini di un risorsa a valore aggiunto capace di supportare al meglio la comunità scientifica.

La banca dati video real time intesa come funzione di servizio per dati di repertorio ancora una volta contextualizzati e storicamente referenziati, che possono tracciare l’evoluzione storica del sito o del bene anche per le future valutazioni o in caso di interventi simili, è un elemento che introduce innovazione e utilità in senso generale anche per usi industriali differenti da quelli tipici del mondo archeologico, come ad esempio i sistemi di monitor e control di centrali elettriche o di interventi in zone sottomarine per manutenzione di oleodotti o in contesti di protezione civile di supporto alle decisioni in vasti siti devastati da eventi disastrosi e dove la sintesi informativa è fondamentale al supporto alle decisioni.

In sintesi MESSIAH si candida con l’OR4 a gestire non solo contesti relativi ai beni culturali ma a svolgere un’azione leader e di trascinamento del territorio anche in altri...
contesti operativi complessi dove la visualizzazione real time e l’interoperabilità giocano un ruolo importante per il supporto alle decisioni (sicurezza, ambiente, protezione civile, etc.).

Per la sua specifica collocazione e per il partenariato coinvolto nel progetto riteniamo che il Distretto Tecnologico a seguito dei risultati del progetto MESSIAH potrà divenire un punto di riferimento non solo in Italia ma anche nell’area del Mediterraneo, favorendo anche la creazione di apposite filiere e di sintesi di servizio sul tema Marino oggi difficili da reperire sia per competenze sia per qualità e natura dei risultati offribili.

OR5
Nell’ambito dei Beni Culturali Subacquei, il suddetto obiettivo realizzativo si propone di superare i limiti informatici attuali, che vincolano tutto il sistema di gestione delle informazioni relative ai Beni Culturali ed ambientali.

Nell’obiettivo si abilita la definizione di un modello delle informazioni inerente il patrimonio archeologico subacqueo, integrato in modo da realizzare viste originali contestualizzate in scenari culturali più ampi. Su tale modello unitario si fonda una soluzione potente e flessibile per dare supporto informativo a più livelli di utenza. Il modello proposto è inoltre il mezzo con il quale è possibile sia valorizzare le informazioni esistenti, sia fornire uno stimolo per il completamento della base di conoscenza sull’Archeologia Subacquea da parte di ogni Ente interessato al progetto, al fine di raggiungere un sempre più alto livello di completezza e profondità delle informazioni erogate.

Si ritiene, quindi, che la disponibilità di una siffatta soluzione sia un elemento di forte vantaggio competitivo rispetto all’attuale stato dell’arte dell’informatizzazione dei Beni Culturali Subacquei; da quanto scritto, è possibile prefigurare un importante sviluppo di business facendo riferimento a ciascun Ente territoriale che si potrà proporre come autorevole punto di riferimento culturale, in grado di contestualizzare il proprio patrimonio archeologico subacqueo su più livelli di riferimento (storico, sociologico ecc.) e quindi di dare un alto valore aggiunto allo stesso, diventando un elemento propulsore nel coinvolgimento delle varie tipologie di utenti, nel formulare offerte culturali differenziate, “accattivanti” e quindi in grado di raggiungere rapidamente il favore di una utenza sempre più vasta e diffusa.

OR6
Considerata la situazione attuale italiana, risulta essenziale creare e potenziare le attrezzature di tipo tecnico-scientifico che operino per la protezione del patrimonio, con il minimo impegno aggiuntivo di risorse. In particolare, molte indagini tecnico-scientifiche condotte sui beni culturali necessitano di attrezzature di interesse multisettoriale (laboratori chimici, tecniche analitiche avanzate, architetture di calcolo parallele e reti ad alta velocità) che richiedono per il loro funzionamento un vasto contesto organizzativo e di competenze a cui MESSIAH pensa di rispondere e di adempiere.

L’intera filiera a cui si rivolge MESSIAH ha necessità di valutare l’opportunità del recupero di un relitto sia attraverso una serie di potenzialità informative e di opportunità di network che si potranno offrire per la sua conservazione e musealizzazione sia per le
potenzialità della promozione con complessiva ricaduta sul piano scientifico, culturale, occupazionale, turistico ecc.
Recupero implica conseguentemente restauro e musealizzazione: quindi costi alti e programmazioni anche economiche a lungo raggio, che possono non sempre risultare soluzioni convenienti e produttive.
Il tutto si traduce in una grande opportunità di lavoro di tipo valutativo ed esecutivo che può essere applicata in termini di intelligence e di servizio e, nel caso del bene sommerso, costituisce uno dei fattori di più largo impiego, a prescindere da cosa si deciderà di fare in merito al futuro del sito scoperto.

OR7
Le utilità delle conoscenze acquisibili per IOR7 sono:

– favorire la generazione di processi iterativi di ricerca Università – Impresa nel campo delle scienze cognitive;
– favorire la generazione delle condizioni di base per la nascita di una filiera specializzata ed integrata tra mondo scientifico e produttivo nel comparto delle scienze cognitive;
– stimolare il trasferimento di conoscenze e tecnologie avanzate verso le imprese regionali del comparto ICT che operano in settori maturi della tecnologia;
– supportare i processi di innovazione delle imprese nelle tecniche di knowledge management.
10 – Copertura finanziaria

La copertura finanziaria del progetto sarà garantita, per conto della Società Consortile richiedente, da ogni singolo socio, in base al suo specifico piano di investimenti (il piano di investimenti di ogni socio si inquadra come una Commessa Interna che la Società Consortile affiderà al socio medesimo).

<table>
<thead>
<tr>
<th>Socio Coinvolto nel progetto</th>
<th>Investimento (Euro)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Università degli studi di Reggio Calabria</td>
<td>709.700</td>
</tr>
<tr>
<td>Università degli studi di Cosenza</td>
<td>1.530.009</td>
</tr>
<tr>
<td>Università degli studi Magna grascia di Catanzaro</td>
<td>163.750</td>
</tr>
<tr>
<td>Calpark</td>
<td>40.000</td>
</tr>
<tr>
<td>CM Sistemi Sud S.r.l.</td>
<td>2.846.695</td>
</tr>
<tr>
<td>Tebad</td>
<td>118.000</td>
</tr>
<tr>
<td>Demetra S.p.A.</td>
<td>260.000</td>
</tr>
<tr>
<td>FIP Industriale S.p.A</td>
<td>100.000</td>
</tr>
<tr>
<td>ID Technology S.r.l.</td>
<td>230.000</td>
</tr>
<tr>
<td>Infobyte S.p.A.</td>
<td>4.042615</td>
</tr>
<tr>
<td>Infomobility.it S.p.A.</td>
<td>190.000</td>
</tr>
<tr>
<td>Intersiel S.p.A</td>
<td>461.538</td>
</tr>
<tr>
<td>Nautilus Società Cooperativa</td>
<td>615.385</td>
</tr>
<tr>
<td>Sirfin S.p.A.</td>
<td>769.231</td>
</tr>
<tr>
<td>Tecnimp S.r.l.</td>
<td>153.846</td>
</tr>
<tr>
<td>TOTALE</td>
<td>12.230.769</td>
</tr>
</tbody>
</table>

Tabella 20 – Il valore degli investimenti ripartito tra i Soci

Ognuno dei partecipanti contribuirà, pertanto, secondo proprie modalità ad integrare i propri specifici incentivi ottenuti per la relativa quota di progetto.

Le fonti di copertura finanziaria deriveranno dall’apporto di mezzi propri di ciascun socio in quota proporzionale al proprio piano di investimenti.

<table>
<thead>
<tr>
<th>Progetto di ricerca</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>TOTALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progetto di ricerca</td>
<td>4.280.769</td>
<td>5.503.846</td>
<td>2.446.154</td>
<td>12.230.769</td>
</tr>
<tr>
<td>TOTALE GENERALE</td>
<td>12.230.769</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 21 – Suddivisione dei costi per anno solare
11 – Validità industriale del progetto

In base a stime approssimative possiamo dire che ad oggi sussistono tra i 6000 ed i 7000 siti di relitti e di reperti da naufragio recuperabili in Italia. In particolare la maggiore densità è collocata nell’area compresa tra la Sicilia e la Calabria dove si percorrevano le rotte mercantili a cui si sono aggiunte nel tempo anche le flotte crociate e poi le rotte tipiche della pirateria. Un vasto patrimonio unico ed originale pieno di contenuti informativi che vanno da quelli tipici degli usi e costumi dei differenti popoli ma anche a quelli della vita e delle tecniche marinare fine a se stesse.

Su questo bacino informativo estremamente complesso si colloca la necessità di inserire ed acquisire nuove tipologie di dati multimediali come quelli video o quelli digitali realizzati in computer grafica.

La Cultura e Innovazione S.c.ar.l. con MESSIAH, potrà fornire alla pubblica amministrazione e agli enti locali l’indispensabile organismo tecnico-scientifico di supporto nella progettazione e gestione di interventi integrati miranti alla conservazione di questa porzione del patrimonio culturale italiano.

Nel nostro paese, accanto ad istituti nazionali prestigiosi preposti ad interventi di restauro e di catalogazione dei beni culturali dipendenti dal Ministero per i Beni e le Attività Culturali, mancano del tutto strutture adeguate per la valorizzazione dei reperti subacquei in grado di fornire attività di ricerca e di servizio nell’ambito dello sviluppo di tecnologie analitiche e informatiche della modellistica e della progettazione di interventi integrati sui beni stessi.

E’ in base a queste considerazioni che riteniamo che la Società Consortile con MESSIAH potrà svolgere un utile ruolo di riferimento nazionale nell’introduzione di tecnologie analitiche e informatiche e metodologie scientifiche per le applicazioni ai beni di interesse storico in archeologia subacquea e nella definizione dei relativi standard e linee guida.

11.1 - Coerenza strategica e gestione del progetto

11.1.1 - Coerenza con gli obiettivi strategici dell’impresa

I servizi/prodotti proposti nel progetto sono principalmente finalizzati ad ottenere un’organizzazione ottimizzata di servizi innovativi a supporto dell’ archeologia subacquea, in grado, da una parte, di rispondere efficacemente ai fabbisogni di innovazione di questa disciplina e, d’altra parte, di promuovere il Distretto nel suo potenziale ruolo di collegamento tra la gestione del patrimonio subacqueo e le politiche di promozione del territorio della regione.

La coerenza del progetto proposto con le linee strategiche di sviluppo del Consorzio è dimostrata dalle seguenti osservazioni:

− il progetto renderà possibile lo sviluppo e l’ampliamento delle competenze delle imprese del Consorzio nell’ambito dell’individuazione dei beni archeologici subacquei; dell’organizzazione delle informazioni e della loro valorizzazione, sia dal punto di vista informativo, sia dal punto di vista delle tecnologie di fruizione per le singole aziende del consorzio;
i risultati attesi dal progetto renderanno possibile uno sfruttamento commerciale nell’area territoriale di competenza del Consorzio;

- i risultati ottenuti, inoltre, permetteranno al Consorzio di recitare il ruolo di poli di competenza sul mercato dei beni archeologici sommersi per la Calabria, inizialmente, e per tutta l’area del Mediterraneo successivamente.

11.1.2 - Criteri di selezione e monitoraggio del progetto

Il progetto è stato selezionato dal Consorzio in base a considerazioni di mercato. Infatti:

- le tematiche tecnologiche che si affronteranno nel progetto permettono alle singole aziende del Consorzio di continuare a sviluppare le proprie competenze nei settori della valorizzazione delle informazioni di ambito storico-culturale, provenienti da ambiti eterogenei;

- il mercato target è costituito da tutti gli Enti che presidiano il patrimonio archeologo sommerso e da tutti i potenziali fruitori, che rappresentano un settore di domanda di enorme rilevanza attualmente non coperto dal mercato.

L’industrializzazione e la vendita dei risultati attesi dal progetto permetteranno, quindi, al Consorzio di potenziare e valorizzare le proprie competenze tecnologiche chiave, consentendo nel contempo di diversificare significativamente la propria azione su un nuovo importante settore di mercato.

11.1.3 - Interazione delle strutture impegnate nel progetto con le altre strutture dell’impresa

La Società Consortile Cultura e Innovazione si presenta come una struttura snella caratterizzata da una variegata composizione societaria, in cui i soci svolgeranno le attività progettuali sottoforma di Comessa Interna ricevuta da parte della Società Consortile (Soggetto Attuatore e quindi referente nei confronti del M.I.U.R.). Tutti i soci che prenderanno parte al progetto metteranno a disposizione le loro strutture per lo svolgimento della ricerca ed interagiranno con la sede del Consorzio.

11.1.4 – Gestione del progetto

Il progetto sarà gestito da un “Comitato Tecnico di Progetto” composto da ciascun responsabile di Obiettivo Realizzativo, e presieduto dal responsabile di progetto. Tale Comitato si occuperà di monitorare il progetto nei suoi obiettivi, nella scelta dei contenuti informativi e nella validazione dei risultati, mentre per l’esecuzione delle diverse attività si adotteranno metodiche di project management che assicurino il rispetto dei costi e dei tempi preventivati in rapporto ai previsti risultati da conseguire.

Il Comitato Tecnico di Progetto farà riferimento al Comitato Tecnico Scientifico della Società Consortile per tutte le problematiche di carattere scientifico e sarà assistito dalla S&D S.r.l. per le attività di carattere operativo.
11.2 – Competitività tecnologica

La Calabria possiede un inestimabile patrimonio artistico sommerso, tra i più ricchi al mondo. Valorizzare le bellezze artistiche, moltiplicarne le conoscenze culturali e creare uno sviluppo economico sono oggi obiettivi da raggiungere attraverso l’applicazione delle tecnologie più avanzate nel settore dei Beni Archeologici Subacquei.

L’informatica e le reti di comunicazione sono ormai diventate elementi lavorativi anche per gli studiosi di scienze umanistiche. La nuova sfida che l’ICT deve affrontare è fornire strumenti più efficaci di analisi dei dati, in modo da facilitare la fruizione e lo studio del patrimonio culturale. Oltre ad assistere gli studiosi, l’ICT può diventare perciò un veicolo per diffondere la cultura ad un numero elevato di persone, impiegando moderni strumenti di editoria multimediale che siano in grado di illustrare in modo estremamente completo tutti i dati, i luoghi ed i fatti che circondano lo specifico elemento culturale.

I risultati potenziali, ottenuti nell’ambito del progetto proposto, opportunamente ingegnerizzati, sono sicuramente di largo interesse e possono trovare diversi sbocchi sia in Italia che all’estero.

Il presente progetto si inserisce, in un contesto molto flessibile e “culturalmente” pronto, allo scopo principale di impattare sugli aspetti di integrazione complessiva del ciclo di vita del patrimonio culturale sommerso. Ciò, se da un lato andrà a garantire la gestione di una situazione già oggi fortemente evolutiva in termini di domanda, dall’altro indurrà un’ulteriore crescita della stessa domanda, in quanto l’ottimizzazione del processo lo renderà più efficiente ed efficace.

La presenza di Università nella realizzazione del progetto, d’altronde, non può che essere un’ulteriore forte garanzia sull’utilizzo di tecnologie e metodologie altamente innovative.

11.2.1 - Caratteristiche dell’offerta

Al momento attuale, l’offerta di strumenti e servizi innovativi per l’Archeologia Subacquea permette di:

− ottenere ottimi risultati nel campo dell’acquisizione dei dati geofisici e nel processamento degli stessi; di contro la fase interpretativa è svolta manualmente da specialisti geologi che sulla base della loro esperienza riescono classificare la tipologia dei fondali ed ad individuare parti emerse senza però distinguere la tipologia degli stessi;

− raggiungere, per la conservazione ed in seguito la musealizzazione del materiale archeologico, un intervallo di modulazione che non supera i 50 nm;

− gestire sistemi informativi, prevalentemente per beni subaerei, che impiegano architetture client/server, data base relazionali e moderni strumenti di publishing. Informazioni e/o dati collaterali non sono sempre evidenziati e raramente esistono legami con gli eventi storici del periodo a cui il reperto si riferisce Non esiste uno standard di settore e, spesso, ogni progetto è diverso dall’altro.

Raramente si trova l’utilizzo della realtà virtuale quale strumento per assistere il pubblico a meglio comprendere l’ambiente in cui nasce l’opera d’arte e per poter mettere a fuoco gli elementi di contorno che hanno in qualche modo influenzato il reperto archeologico.
11.2.2 - Evoluzione della domanda

In questo quadro complessivo, la nuova domanda di progetti informatici per i Beni Archeologici Subacquei tende a focalizzare la sua attenzione sui seguenti punti:

- Creazione di un’unica piattaforma di sviluppo sulla quale poter appoggiare tutte le nuove applicazioni che vengono sviluppate. Le nuove tecnologie, che sono rese disponibili, devono poter essere facilmente inserite nella piattaforma e non diventare un fattore che ne limita l’evoluzione.
- Valorizzazione di tutte quelle informazioni/attività già esistenti, integrandole nella nuova piattaforma senza eccessivi problemi. Il patrimonio elettronico esistente deve essere salvaguardato e deve servire come ricca base dati sulla quale costruire nuove applicazioni. La riconversione di questi dati non deve portare alla perdita di importanti informazioni già acquisite e deve permettere di creare una base sulla quale appoggiare i nuovi sistemi.
- Adattamento alle esigenze degli studiosi con modalità di facile fruizione.
- Disponibilità di soluzioni che valorizzino il patrimonio artistico, sia in ambito accademico, sia per le attività di tipo turistico.
- Allargamento delle conoscenze culturali ad un numero elevato di persone, impiegando delle metodologie che permettono di imparare in maniera estremamente semplice, immagazzinando mentalmente dati rilevanti che sono correlati tra di loro.

11.2.3 - Validità prospettica del progetto

Il progetto punta a realizzare un sistema che colga pienamente le opportunità offerte dall’evoluzione della domanda e dalla carenza dell’attuale offerta. In tale ottica, si considera particolarmente qualificante:

- Fondare il sistema su una piattaforma che può essere utilizzata nelle diverse aree del Mediterraneo e che permette di integrare il patrimonio informativo già esistente.
- Realizzare un software che riesca a discretizzare le varie componenti costituenti il fondo marino. Ciò consente di fare un salto di qualità notevole nel campo della geofisica marina, ed in particolare nel campo della ricerca dei beni archeologici sommersi. Infatti, l’utilizzo del software interfacciato con una banca dati di sonogrammi, aventi le risposte degli spettri rilasciati da una serie di oggetti, consentirebbe ai geofisici, anche meno esperti, di avere un supporto alle loro decisioni.
- Progettare e realizzare un prototipo di scanner 3D subacqueo che permetta di studiare, analizzare ed archiviare i beni culturali sommersi senza rimuoverli dalla propria sede. Il mercato delle tecnologie per l’archeologia subacquea potrà trovare in questo nuovo strumento un’opportunità di sviluppo verso una nuova direzione che è quella del rilievo digitale dei reperti e degli scafi sommersi senza che questi debbano essere rimossi dal fondale marino.
- Progettare un micro scanner laser 3D capace di indagare le cavità centimetriche di oggetti. Il parallelo sviluppo di mirror less laser organici modulabili su tutto
lo spettro visibile amplia ancora di più le prospettive di sviluppo. Ad oggi non esistono sul mercato né il micro scanner laser come quello proposto, né laser modulabili su tutto lo spettro visibile. L’ambito di applicazione non si limita ai Beni Culturali, ma può essere esteso, per esempio, anche al campo biomedico.

- Realizzare un prodotto che si caratterizza per la sua semplicità d’uso, così da garantire la sua rapida diffusione sul mercato.
- Mettere l’utente del prodotto al centro del sistema, quale elemento decisionale sul tipo e sulla quantità di informazioni che desidera ricevere; renderlo protagonista del processo, così da continuamente stimolare il suo interesse.
- Coprire le esigenze del mondo accademico che è inondato da enormi quantità di informazioni/dati e che può trovare nelle tecnologie dell’informazione un aiuto nell’opera di classificazione e inquadramento delle opere d’arte nel contesto storico.
- Realizzare un sistema che può fornire supporto alle attività turistiche associate al settore culturale, rendendole più diffuse e meno “aride” dell’attuale stato in cui si trovano.

Inoltre, considerando che tra gli obiettivi strategici del progetto (OR7) si prevede di trasferire il patrimonio di studi e ricerche prodotto dall’Ateneo al sistema delle Imprese e di fornire supporto scientifico alle attività di ricerca delle Imprese in termini di validazione e certificazione dei dati scientifici, la validità industriale dei suddetti obiettivi risiede nell’analisi ed applicazione di tecniche di modellazione cognitiva e di creazione di processi cognitivi innovativi per favorire la trasferibilità delle conoscenze in materia di beni culturali orientate alle imprese.

11.3 - Ricadute economiche dei risultati attesi

I mercati di riferimento dei soggetti coinvolti nel progetto sono molto diversi tra loro ma presentano caratteristiche comuni: una crescita continua negli anni e un investimento industriale sempre più marcato nel settore dei beni culturali.

A partire dalla fine del progetto, i soggetti partecipanti al consorzio avvieranno un processo di ingegnerizzazione dei risultati della ricerca, per ottenere, come prodotto da collocare sul mercato, un sistema informativo innovativo di supporto al processo integrato di gestione dell’archeologia subacquea.

Durante questa fase di ingegnerizzazione il soggetto proponente prevede, da un lato di poter utilizzare direttamente il pacchetto software sviluppato, e dall’altro di mettere in campo una collaborazione per avviare una campagna di promozione organica e strutturata in modo da proporsi per la vendita del pacchetto software sul mercato.

I risultati attesi, in termini di modelli, strumentazione, piattaforme software, facendo riferimento ad un settore di nicchia quale quello dell’archeologia subacquea, determineranno l’acquisizione di un vantaggio competitivo per alcuni aspetti vendibile anche a livello mondiale.

Si consideri, infatti, che i principali risultati del progetto prevedono:
CI CULTURA E INNOVAZIONE S.C.a R.L.

- la realizzazione di strumenti di supporto alla ricerca nel campo dei rilievi archeologici marini;
- la realizzazione del prototipo di uno scanner 3D subacqueo;
- la realizzazione del micro scanner laser 3D capace di indagare le cavità centimetriche di oggetti;
- la creazione di sistema di monitor & control operativo integrato ad un sistema di simulazione e pianificazione degli interventi;
- la creazione di un sistema informativo che raccoglie ed integra diversi sistemi informativi di catalogo per creare un patrimonio di dati e conoscenze che va oltre l’archeologia subacquea e spazia anche verso il patrimonio culturale fuori dall’acqua, ma potenzialmente legato al patrimonio sommerso.

Questi singoli elementi del progetto, insieme ad altri meno specifici ma allo stesso modo innovativi, fanno del sistema MESSIAH nel suo complesso, un “prodotto” che apre ampie prospettive economiche nel settore degli interventi in missioni archeologiche sottomarine nel Mediterraneo dove già operano i partner stranieri del progetto (RPM e INA).

Il centro di monitoraggio e la cabina di regia possono divenire il punto di controllo per i servizi a livello internazionale di rilievo su cui da subito portare tutte le commesse che i partner stranieri e referenziati del progetto già hanno in area mediterraneo.

A seguire il centro potrà anche disporre di una sua banca dati digitale innovativa che potrà entrare nei circuiti internazionali di divulgazione scientifica ed in tal senso Rai Educational ha già manifestato il suo interesse vista la natura estremamente significativa dei dati a cui il progetto si sta rivolgendo.

Il mercato a cui ci si rivolge è dunque un mercato ampio che parte dai servizi di monitoraggio via satellite dei parchi tematici o aree marine protette sul Mediterraneo, diventa un centro di identificazione, rappresentazione, conservazione, restauro, valorizzazione e di fruizione su un tema estremamente specializzato e poi si rivolge al largo pubblico del mondo digitale che va dalla TV alla tecnologia mobile.

Si ritiene in sintesi che le aziende partecipanti al progetto ed i centri di ricerca potranno vedere un incremento tangibile delle loro attività su questo settore se l’intera filiera si presenterà in maniera integrata e capace di offrire soluzioni chiavi in mano competitive in quanto tecnologicamente di avanguardia.

Il primo risparmio di minori costi sarà comunque la comunità Istituzionale a beneficiarne in quanto la filiera integrata può ridurre tempi e costi degli attuali interventi e prospettare servizi di osservazione e messa in sicurezza prima non possibili o comunque con costi di esercizio molto alti in quanto al di fuori di uno schema procedurale/produttivo ottimizzato.

Non meno economicamente rilevante sarà la qualificazione professionale dell’intero micro-sistema socioeconomico territoriale dell’area di Crotone (obiettivo1) ed in generale delle aree di ricerca con essa connesse ed il potenziamento della sua capacità produttiva, anche nel bacino mediterraneo.
11.4 - Previste ricadute occupazionali

Con il presente progetto si mira ad incrementare fortemente il volume d’affari dell’aziende coinvolte all’interno del Consorzio; ciò potrà comportare una forte ricaduta occupazionale (oltre alla salvaguardia degli attuali posti di lavoro).

Gli adeguamenti di organico previsti derivano:

- dall’esecuzione del progetto di R&S stesso, che richiede il potenziamento dell’attuale gruppo di R&S della società;
- dall’esecuzione dell’attività di industrializzazione dei risultati del progetto, che richiede una forza lavoro aggiuntiva valutabile in circa il 50% della forza lavoro impiegata complessivamente per il progetto di R&S;
- dall’incremento delle attività indotte di vendita, consulenza e progettazione di sistemi informativi, valutabile considerando una tariffa media per l’anno uomo pari a 61,97 mila €;
- dall’incremento delle attività indotte di assistenza, valutabile considerando una tariffa media per l’anno uomo pari a 46,48 mila €.

E’ da sottolineare l’elevata qualità dei posti di lavoro che si creeranno, basati sulla formazione di professionalità destinate ad affrontare progetti complessi in segmenti di mercato emergenti e legati a tecnologie innovative e a larga diffusione sul mercato.

La tabella seguente riporta una stima complessiva della ricaduta occupazionale, in termini di posti di lavoro creati nelle aziende del Consorzio per via del progetto proposto.

<table>
<thead>
<tr>
<th>Motivo di adeguamento</th>
<th>1 anno</th>
<th>2 anno</th>
<th>3 anno</th>
<th>4 anno</th>
<th>5 anno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progetto di R&S</td>
<td>7</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Industrializzazione dei risultati</td>
<td></td>
<td></td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Attività di promozione</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Attività di progettazione e integrazione</td>
<td></td>
<td></td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Attività di assistenza</td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>TOTALE</td>
<td>7</td>
<td>35</td>
<td>73</td>
<td>73</td>
<td>72</td>
</tr>
</tbody>
</table>

Tabella 22 – Stima delle ricadute occupazionali indotte dal progetto MESSIAH

Per quanto riguarda, invece, le Università la ricaduta in termini occupazionali per progetti di questo tipo non può che essere indotta ed a lungo termine. Infatti, quello che ci si può auspicare è che le strutture coinvolte migliorino le proprie competenze e ne acquisiscano di nuove, in modo da poter rappresentare ancora di più un punto di riferimento per la ricerca in questo settore.

11.5 - Previsione della localizzazione dello sfruttamento industriale

La rete di competenze ottenute dall’aggregazione di know-how e tecnologie messe a punto nell’ambito della presente proposta di progetto, pone le basi, dal punto di vista dei partner pubblici, nelle fondamenta di centri di eccellenza in grado di avvicinare le
università alle esigenze delle pubbliche amministrazioni e soprintendenze grazie ai forti investimenti proposti nelle tecnologie di interconnessione e connettività. Da parte dei privati nella nascita di nuove aziende di servizi ed ampliamento dei mercati delle imprese, coinvolte in misura coerente al dimensionamento del mercato potenziale. In linea di principio si può affermare che lo sfruttamento dei risultati sarà, nel medio periodo e a valle della fine delle attività di ricerca, localizzato nel bacino mediterraneo ma, data l’applicabilità su vasta scala dei risultati e le ricadute in altri settori, tale localizzazione perderà le caratteristiche di confinamento geografico.

Come risulta evidente dalla descrizione delle tecnologiche che si voglio mettere in atto con il progetto, potrà essere garantita anche l’applicabilità delle stesse in altri settori. Si tratta fondamentalmente di strumenti per la misura subacquea (visione, prospezione, rilevamento, catalogazione, ect..) e l’applicabilità in settori diversi dall’archeologia subacquea è garantita dalla forte trasversalità e flessibilità di impiego delle tecnologie. Un esempio interessante potrebbe essere quello del mercato potenziale dei sistemi di visione 3D subacquei, i settori come quello delle ricerche sottomarine, ispezioni di cavidotti ed elettrodi, ispezione di tubature e recupero, analisi di rischio. Un altro esempio è rappresentato dagli strumenti e sistemi di Data Integration il cui impiego è fondamentale per tutte le realtà che gestiscono grandi mole di dati eterogenei (es: finance, assicurazione, ecc.). Altri strumenti come le piattaforme di caratterizzazione morfologica totale, trovano vasto impiego in applicazioni in cui l’ispezione superficiale di un oggetto non è sufficiente mentre sarebbe indispensabile avere una misura completa anche dei volumi interni.
12 – Articolazione dei costi

12.1 - Personale e consulenze (per ogni socio coinvolto nel progetto)
Seguono le tabelle riassuntive dell’impegno in anni*uomo del personale e delle consulenze per ogni attività, suddiviso tra ricerca industriale e sviluppo precompetitivo.
Le tabelle seguenti sono riferite ad ogni socio del consorzio che opererà sul progetto.
<table>
<thead>
<tr>
<th>ATTIVITÀ'</th>
<th>Ricerca Industriale</th>
<th>Sviluppo Precompetitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>3,23</td>
<td>0,42</td>
</tr>
<tr>
<td>1.2</td>
<td>2,33</td>
<td>0,42</td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>0,42</td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>0,42</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>0,42</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>1,42</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>2,07</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>1,40</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td>8,55</td>
<td>3,28</td>
</tr>
<tr>
<td>ATTIVITA'</td>
<td>Ricerca Industriale</td>
<td>Sviluppo Precompetitivo</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>4.56</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>1.66</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>2.86</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>2.69</td>
<td>0.44</td>
</tr>
<tr>
<td>3.5</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>2.76</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td>21.79</td>
<td>0.44</td>
</tr>
<tr>
<td>ATTIVITÀ</td>
<td>Ricerca Industriale</td>
<td>Sviluppo Precompetitivo</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td>2.1</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td>5.1</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td></td>
<td>2.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTIVITA'</td>
<td>Ricerca Industriale</td>
<td>Sviluppo Precompetitivo</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>ATTIVITÀ</td>
<td>Ricerca Industriale</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Personale</td>
</tr>
<tr>
<td>OR1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td></td>
<td>23,42</td>
</tr>
<tr>
<td>ATTIVITÀ</td>
<td>Ricerca Industriale</td>
<td>Sviluppo Precompetitivo</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>1,38</td>
<td>0,59</td>
</tr>
<tr>
<td>OR4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td>1,38</td>
<td>0,59</td>
</tr>
<tr>
<td>ATTIVITÀ</td>
<td>Ricerca Industriale</td>
<td>Sviluppo Precompetitivo</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>OR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>3,33</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td>3,83</td>
<td>0,50</td>
</tr>
</tbody>
</table>
ATTIVITA' Ricerca Industriale Sviluppo Precompetitivo

<table>
<thead>
<tr>
<th>OR1</th>
<th>Personale</th>
<th>Consulenza</th>
<th>Personale</th>
<th>Consulenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
<td>0,83</td>
<td>0,80</td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| TOTALI | | 1,63 | | |

Sviluppo Precompetitivo

0,83 0,80
Socio: Id Technology

<table>
<thead>
<tr>
<th>ATTIVITÀ</th>
<th>Ricerca Industriale</th>
<th>Sviluppo Precompetitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td></td>
<td>3,83</td>
</tr>
<tr>
<td>ATTIVITÀ'</td>
<td>Ricerca Industriale</td>
<td>Sviluppo Precompetitivo</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td>4,58</td>
</tr>
<tr>
<td>OR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td>4,50</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>7,50</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>4,33</td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td>5,17</td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td>4,75</td>
</tr>
<tr>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3,23</td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td>35,87</td>
<td>14,83</td>
</tr>
<tr>
<td>ATTIVITA'</td>
<td>Ricerca Industriale</td>
<td>Sviluppo Precompetitivo</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>OR4</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td>5.1</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>1,58</td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td>2,53</td>
<td>0,63</td>
</tr>
</tbody>
</table>

200
<table>
<thead>
<tr>
<th>ATTIVITÀ'</th>
<th>Ricerca Industriale</th>
<th>Sviluppo Precompetitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td>0,75</td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td>2,03</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td>4,17</td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
<td>4,17</td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td></td>
<td>4,17</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Ricerca Industriale</td>
<td>Sviluppo Precompetitivo</td>
</tr>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td>1.1</td>
<td>2,92</td>
</tr>
<tr>
<td>OR2</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td>6.1</td>
<td>0,50</td>
</tr>
<tr>
<td>OR7</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTALI</td>
<td>3,42</td>
</tr>
<tr>
<td>ATTIVITÀ'</td>
<td>Ricerca Industriale</td>
<td>Sviluppo Precompetitivo</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td>1,67</td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
<td>2,83</td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td>4,50</td>
<td>3,20</td>
</tr>
<tr>
<td>ATTVITÀ'</td>
<td>Ricerca Industriale</td>
<td>Sviluppo Precompetitivo</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Personale</td>
<td>Consulenza</td>
</tr>
<tr>
<td>OR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | 2,51 |
12.2 - Altri costi

Le voci di costo che seguono sono distribuite tra i vari partner in funzione della tipologia di attività di ricerca di loro competenza.

12.2.1 - Attrezzature

Le principali attrezzature da acquistare per lo svolgimento del progetto riguardano:

INFOBYTE

Sala visione per la pianificazione e la progettazione- visualizzazione e divulgazione dei dati scientifici – OR2

La soluzione di allestimento prevede:
- sottosistema di riproduzione di immagini composto da 3 proiettori ed un grande schermo cilindrico (circa 9x2 metri) con capacità di stereoscopia passiva
- sottosistema di processamento grafico composto da 6 PC (in clustering) + 1 PC server di controllo con capacità di rendering parallelo e stereoscopia
- sottosistema audio

<table>
<thead>
<tr>
<th>Prodotto</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluzione Barco per sottosistema di riproduzione di immagini:</td>
<td>€ 462.000</td>
</tr>
<tr>
<td>Schermo cilindrico (raggio 3 m, apertura 180°)</td>
<td></td>
</tr>
<tr>
<td>3 Videoproiettori BARCOREALITY SIM6 MKII 1280x1024 con lenti QFD 1,27:1</td>
<td></td>
</tr>
<tr>
<td>2 Schermi al Plasma</td>
<td></td>
</tr>
<tr>
<td>SW base di controllo</td>
<td></td>
</tr>
<tr>
<td>Componenti ed apparati di corredo per stereoscopia passiva</td>
<td></td>
</tr>
<tr>
<td>Soluzione Orad per sottosistema di processamento grafico:</td>
<td>€ 236.000</td>
</tr>
<tr>
<td>1 PC Server di controllo</td>
<td></td>
</tr>
<tr>
<td>6 DVG-1 con DVG card per rendering parallelo a 120 HZ necessario per</td>
<td></td>
</tr>
<tr>
<td>stereoscopia</td>
<td></td>
</tr>
<tr>
<td>Sottosistema audio</td>
<td>€ 29.000</td>
</tr>
<tr>
<td>Totale</td>
<td>€ 730.000</td>
</tr>
</tbody>
</table>

Tabella 23 – Costi Infobyte per Sala visione

Sala per il monitor & control real time – cabina di regia - OR4

<table>
<thead>
<tr>
<th>Prodotto</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluzione per il monitoraggio LIVE:</td>
<td></td>
</tr>
<tr>
<td>3 PC di controllo</td>
<td></td>
</tr>
<tr>
<td>12 Monitor PAL</td>
<td></td>
</tr>
<tr>
<td>3 Sistemi di registrazione LIVE</td>
<td></td>
</tr>
<tr>
<td>2 Schermi al Plasma</td>
<td></td>
</tr>
<tr>
<td>SW base di controllo</td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>€ 70.615</td>
</tr>
</tbody>
</table>

Tabella 24 – Costi Infobyte per sala per il monitor & control real time
CM SISTEMI SUD

Sala per il monitor & control real time – cabina di regia - OR4

<table>
<thead>
<tr>
<th>Prodotto</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Dual Render HDDVG Sd mode WS , DVI, Licenza Cyberset NT, Licenza 3D Design Advance</td>
<td></td>
</tr>
<tr>
<td>2 Tracking head Vinten 250 (Pan/Tilt head) + 2 ASB7 + 1 ASR10 + SW tracking + sensorizzazione ottiche</td>
<td></td>
</tr>
<tr>
<td>2 Ottiche Sensorizzate Fujinon complete di Bauden Zoom/Focus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>€ 461.695</td>
</tr>
</tbody>
</table>

Totale € 461.695

Tabella 25 – Costi CM Sistemi Sud per sala per il monitor & control real time

SIRFIN

Sala per il monitor & control real time – cabina di regia - OR4

<table>
<thead>
<tr>
<th>Prodotto</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Convertitori, monitor e PC di controllo</td>
<td></td>
</tr>
<tr>
<td>2 Telecamere + CCU con uscita SDI</td>
<td></td>
</tr>
<tr>
<td>2 Cavalletti</td>
<td></td>
</tr>
<tr>
<td>1 Mixer video SDI + Chroma key+registratore digitale</td>
<td></td>
</tr>
<tr>
<td>1 Generatore di sync</td>
<td></td>
</tr>
<tr>
<td>1 Sistema audio integrato, microfoni e mixer audio</td>
<td></td>
</tr>
<tr>
<td>1 Software di controllo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>€ 307.231</td>
</tr>
</tbody>
</table>

Totale € 307.231

Tabella 26 - Costi Sirfin per sala per il monitor & control real time

TECNIMP

_Attrezzature per allestimento prototipo di Teca Att. 3.7 | € 15.000 |

 |
12.2.2 - Consulenze

Le consulenze previste nel progetto sono:

Consulenze principali

Da **Infobyte** ad **Arethusa S.r.l.** (€ 200.000)
ARETHUSA Consorzio di Ricerca e Sviluppo s.r.l. nasce nel 1989 con l’obiettivo di produrre beni e servizi nell’ambito della gestione, conservazione, catalogazione e fruizione dei Beni Culturali e Ambientali. Oggi è una delle società leader del settore ed è presente, da sola o in collaborazione con altri qualificati partners, in alcuni dei più prestigiosi spazi italiani per la Cultura:

- Aree archeologiche di Pompei, Ercolano, Stabia, Bosco Reale, Oplontis
- Reggia di Caserta
- Sistema Informativo Turistico del Comune di Roma
- Parco Archeologico Città del Tufo (Sorano - GR)
- Museo Civico Archeologico di Pitigliano (GR)
- Parco Archeologico di Occhiolà (Grammichele - CT)
- Parco Archeologico degli Etruschi di Ghiaccio Forte (Scansano - GR)

I campi d’intervento di Arethusa sono assai differenziati ma comunque riconducibili al settore della produzione di beni e servizi per la Cultura, l’Ambiente ed il Turismo, un settore che richiede, a chi voglia operare al suo interno, grande flessibilità e il possesso di una notevole varietà di specifiche competenze scientifiche e professionali. In particolare nel campo dei beni archeologici subacquei Arethusa ha sviluppato competenze tramite laboratori strutturati nell’area di Montalo di Castro (Toscana). Arethusa svolgerà attività di consulenza, per conto di Infobyte, nell’ambito dell’OR4 e OR6

Da **CM Sistemi Sud** ad **Oltrestudio S.r.l.** (€ 300.000)
CM sistemi sud attiva una consulenza ad Oltrestudio S.r.l., nell’ambito dell’Attività 3.3, in quanto azienda in grado di svolgere approfondite analisi sui reperti, in particolare ceramiche, vetro antico e pietre lavorate, aventi come obiettivi la caratterizzazione compozizionale dei reperti e la conoscenza delle tecniche di lavorazione adottate. Tali analisi sono volte a stabilire, con l’opportuna consulenza specialistica archeologica, le aree di provenienza delle materie prime e la collocazione dei reperti in un preciso ambito storico-geografico. In particolare, per quanto riguarda la composizione dei reperti, Oltrestudio può svolgere analisi chimiche, fisiche e mineropetrografiche per la caratterizzazione delle fasi mineralogiche, per lo studio dei processi produttivi, per la determinazione quantitativa degli elementi maggiori ed in traccia nei materiali ceramici e nelle materie prime, per lo studio di caratterizzazione e di provenienza. Inoltre, con riferimento alle tecnologie di fabbricazione, Oltrestudio è in grado di indagare, attraverso analisi chimico-fisiche, sui processi produttivi, sui sistemi di cottura utilizzati, sui cicli di
cotta a cui i reperti sono stati sottoposti, sulle tecniche di formatura e modellazione, sulle caratteristiche delle cave di estrazione delle materie prime (prodotti ceramici e lapidei).

Consulenze minori

UNICAL
Consulenze minori nell’ambito dell’OR3 € 20.000

Tecnimp
Consulenze minori nell’ambito dell’attività 3.7 € 20.000

FIP Industriale
Consulenze, ad ALGA Spa e a TIS Spa, per lo sviluppo di tecnologie di isolamento sismico di singoli oggetti d’arte o di teche e per l’inserimento di sistemi di isolamento sismico nelle fondazioni esistenti, o mediate sottofondazione, di edifici storici adibiti a musei, nell’ambito dell’Attività 3.8 € 30.000.

12.2.3 - Materiali

Nautilus, per le attività previste nell’ambito dell’attività 1.1 acquisterà materiali per un totale di € 80.385, dettagliati nella tabella che segue.

<table>
<thead>
<tr>
<th>Materiale</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(descrizione singole voci)</td>
<td></td>
</tr>
<tr>
<td>CARBURANTE</td>
<td>€ 20.000,00</td>
</tr>
<tr>
<td>OLIO</td>
<td>€ 5.000,00</td>
</tr>
<tr>
<td>CAMBUSA</td>
<td>€ 5.000,00</td>
</tr>
<tr>
<td>COMPONENTISTICA</td>
<td>€ 30.385,00</td>
</tr>
<tr>
<td>CANCELLERIA, MATERIALE VARIO</td>
<td>€ 5.000,00</td>
</tr>
<tr>
<td>MATERIALE ELETTRICO ED ELETTRONICO</td>
<td>€ 15.000,00</td>
</tr>
<tr>
<td>Totale</td>
<td>€ 80.385,00</td>
</tr>
</tbody>
</table>

Tabella 27 – Dettaglio dei costi di materiale Nautilus

Anche la FIP Industriale, nell’ambito dello svolgimento dell’Attività 3.8, prevede l’acquisto di materiali (acciai da costruzione ed acciai speciali, elastomeri, polimeri, ecc.) per la costruzione di prototipi di dispositivi di isolamento sismico per la protezione sismica del prototipo di teca espositiva e di oggetti d’arte di grandi dimensioni (es. statue).
13 – Requisiti per la concessione di ulteriori agevolazioni

13.1 - Svolgimento con partner della U.E. (non applicabile al presente progetto)

13.2 - Svolgimento di progetti con enti pubblici di ricerca/università

Il progetto prevede il coinvolgimento delle tre Università calabresi per un importo superiore al minimo previsto (10%) per l’ottenimento della maggiorazione.